Step |
Hyp |
Ref |
Expression |
1 |
|
lshpkrlem.v |
|- V = ( Base ` W ) |
2 |
|
lshpkrlem.a |
|- .+ = ( +g ` W ) |
3 |
|
lshpkrlem.n |
|- N = ( LSpan ` W ) |
4 |
|
lshpkrlem.p |
|- .(+) = ( LSSum ` W ) |
5 |
|
lshpkrlem.h |
|- H = ( LSHyp ` W ) |
6 |
|
lshpkrlem.w |
|- ( ph -> W e. LVec ) |
7 |
|
lshpkrlem.u |
|- ( ph -> U e. H ) |
8 |
|
lshpkrlem.z |
|- ( ph -> Z e. V ) |
9 |
|
lshpkrlem.x |
|- ( ph -> X e. V ) |
10 |
|
lshpkrlem.e |
|- ( ph -> ( U .(+) ( N ` { Z } ) ) = V ) |
11 |
|
lshpkrlem.d |
|- D = ( Scalar ` W ) |
12 |
|
lshpkrlem.k |
|- K = ( Base ` D ) |
13 |
|
lshpkrlem.t |
|- .x. = ( .s ` W ) |
14 |
|
lshpkrlem.o |
|- .0. = ( 0g ` D ) |
15 |
|
lshpkrlem.g |
|- G = ( x e. V |-> ( iota_ k e. K E. y e. U x = ( y .+ ( k .x. Z ) ) ) ) |
16 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
17 |
6 16
|
syl |
|- ( ph -> W e. LMod ) |
18 |
11
|
lmodfgrp |
|- ( W e. LMod -> D e. Grp ) |
19 |
12 14
|
grpidcl |
|- ( D e. Grp -> .0. e. K ) |
20 |
17 18 19
|
3syl |
|- ( ph -> .0. e. K ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lshpsmreu |
|- ( ph -> E! k e. K E. b e. U X = ( b .+ ( k .x. Z ) ) ) |
22 |
|
oveq1 |
|- ( k = .0. -> ( k .x. Z ) = ( .0. .x. Z ) ) |
23 |
22
|
oveq2d |
|- ( k = .0. -> ( b .+ ( k .x. Z ) ) = ( b .+ ( .0. .x. Z ) ) ) |
24 |
23
|
eqeq2d |
|- ( k = .0. -> ( X = ( b .+ ( k .x. Z ) ) <-> X = ( b .+ ( .0. .x. Z ) ) ) ) |
25 |
24
|
rexbidv |
|- ( k = .0. -> ( E. b e. U X = ( b .+ ( k .x. Z ) ) <-> E. b e. U X = ( b .+ ( .0. .x. Z ) ) ) ) |
26 |
25
|
riota2 |
|- ( ( .0. e. K /\ E! k e. K E. b e. U X = ( b .+ ( k .x. Z ) ) ) -> ( E. b e. U X = ( b .+ ( .0. .x. Z ) ) <-> ( iota_ k e. K E. b e. U X = ( b .+ ( k .x. Z ) ) ) = .0. ) ) |
27 |
20 21 26
|
syl2anc |
|- ( ph -> ( E. b e. U X = ( b .+ ( .0. .x. Z ) ) <-> ( iota_ k e. K E. b e. U X = ( b .+ ( k .x. Z ) ) ) = .0. ) ) |
28 |
|
simpr |
|- ( ( ph /\ X e. U ) -> X e. U ) |
29 |
|
eqidd |
|- ( ( ph /\ X e. U ) -> X = X ) |
30 |
|
eqeq2 |
|- ( b = X -> ( X = b <-> X = X ) ) |
31 |
30
|
rspcev |
|- ( ( X e. U /\ X = X ) -> E. b e. U X = b ) |
32 |
28 29 31
|
syl2anc |
|- ( ( ph /\ X e. U ) -> E. b e. U X = b ) |
33 |
32
|
ex |
|- ( ph -> ( X e. U -> E. b e. U X = b ) ) |
34 |
|
eleq1a |
|- ( b e. U -> ( X = b -> X e. U ) ) |
35 |
34
|
a1i |
|- ( ph -> ( b e. U -> ( X = b -> X e. U ) ) ) |
36 |
35
|
rexlimdv |
|- ( ph -> ( E. b e. U X = b -> X e. U ) ) |
37 |
33 36
|
impbid |
|- ( ph -> ( X e. U <-> E. b e. U X = b ) ) |
38 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
39 |
1 11 13 14 38
|
lmod0vs |
|- ( ( W e. LMod /\ Z e. V ) -> ( .0. .x. Z ) = ( 0g ` W ) ) |
40 |
17 8 39
|
syl2anc |
|- ( ph -> ( .0. .x. Z ) = ( 0g ` W ) ) |
41 |
40
|
adantr |
|- ( ( ph /\ b e. U ) -> ( .0. .x. Z ) = ( 0g ` W ) ) |
42 |
41
|
oveq2d |
|- ( ( ph /\ b e. U ) -> ( b .+ ( .0. .x. Z ) ) = ( b .+ ( 0g ` W ) ) ) |
43 |
6
|
adantr |
|- ( ( ph /\ b e. U ) -> W e. LVec ) |
44 |
43 16
|
syl |
|- ( ( ph /\ b e. U ) -> W e. LMod ) |
45 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
46 |
45 5 17 7
|
lshplss |
|- ( ph -> U e. ( LSubSp ` W ) ) |
47 |
1 45
|
lssel |
|- ( ( U e. ( LSubSp ` W ) /\ b e. U ) -> b e. V ) |
48 |
46 47
|
sylan |
|- ( ( ph /\ b e. U ) -> b e. V ) |
49 |
1 2 38
|
lmod0vrid |
|- ( ( W e. LMod /\ b e. V ) -> ( b .+ ( 0g ` W ) ) = b ) |
50 |
44 48 49
|
syl2anc |
|- ( ( ph /\ b e. U ) -> ( b .+ ( 0g ` W ) ) = b ) |
51 |
42 50
|
eqtrd |
|- ( ( ph /\ b e. U ) -> ( b .+ ( .0. .x. Z ) ) = b ) |
52 |
51
|
eqeq2d |
|- ( ( ph /\ b e. U ) -> ( X = ( b .+ ( .0. .x. Z ) ) <-> X = b ) ) |
53 |
52
|
bicomd |
|- ( ( ph /\ b e. U ) -> ( X = b <-> X = ( b .+ ( .0. .x. Z ) ) ) ) |
54 |
53
|
rexbidva |
|- ( ph -> ( E. b e. U X = b <-> E. b e. U X = ( b .+ ( .0. .x. Z ) ) ) ) |
55 |
37 54
|
bitrd |
|- ( ph -> ( X e. U <-> E. b e. U X = ( b .+ ( .0. .x. Z ) ) ) ) |
56 |
|
eqeq1 |
|- ( x = X -> ( x = ( y .+ ( k .x. Z ) ) <-> X = ( y .+ ( k .x. Z ) ) ) ) |
57 |
56
|
rexbidv |
|- ( x = X -> ( E. y e. U x = ( y .+ ( k .x. Z ) ) <-> E. y e. U X = ( y .+ ( k .x. Z ) ) ) ) |
58 |
57
|
riotabidv |
|- ( x = X -> ( iota_ k e. K E. y e. U x = ( y .+ ( k .x. Z ) ) ) = ( iota_ k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) ) |
59 |
|
riotaex |
|- ( iota_ k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) e. _V |
60 |
58 15 59
|
fvmpt |
|- ( X e. V -> ( G ` X ) = ( iota_ k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) ) |
61 |
|
oveq1 |
|- ( y = b -> ( y .+ ( k .x. Z ) ) = ( b .+ ( k .x. Z ) ) ) |
62 |
61
|
eqeq2d |
|- ( y = b -> ( X = ( y .+ ( k .x. Z ) ) <-> X = ( b .+ ( k .x. Z ) ) ) ) |
63 |
62
|
cbvrexvw |
|- ( E. y e. U X = ( y .+ ( k .x. Z ) ) <-> E. b e. U X = ( b .+ ( k .x. Z ) ) ) |
64 |
63
|
a1i |
|- ( k e. K -> ( E. y e. U X = ( y .+ ( k .x. Z ) ) <-> E. b e. U X = ( b .+ ( k .x. Z ) ) ) ) |
65 |
64
|
riotabiia |
|- ( iota_ k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) = ( iota_ k e. K E. b e. U X = ( b .+ ( k .x. Z ) ) ) |
66 |
60 65
|
eqtrdi |
|- ( X e. V -> ( G ` X ) = ( iota_ k e. K E. b e. U X = ( b .+ ( k .x. Z ) ) ) ) |
67 |
9 66
|
syl |
|- ( ph -> ( G ` X ) = ( iota_ k e. K E. b e. U X = ( b .+ ( k .x. Z ) ) ) ) |
68 |
67
|
eqeq1d |
|- ( ph -> ( ( G ` X ) = .0. <-> ( iota_ k e. K E. b e. U X = ( b .+ ( k .x. Z ) ) ) = .0. ) ) |
69 |
27 55 68
|
3bitr4d |
|- ( ph -> ( X e. U <-> ( G ` X ) = .0. ) ) |