Step |
Hyp |
Ref |
Expression |
1 |
|
lshpkrlem.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lshpkrlem.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lshpkrlem.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lshpkrlem.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
5 |
|
lshpkrlem.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
6 |
|
lshpkrlem.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
7 |
|
lshpkrlem.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) |
8 |
|
lshpkrlem.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
9 |
|
lshpkrlem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
lshpkrlem.e |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 ) |
11 |
|
lshpkrlem.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
12 |
|
lshpkrlem.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
13 |
|
lshpkrlem.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
14 |
|
lshpkrlem.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
15 |
|
lshpkrlem.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ) |
16 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
18 |
11
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → 𝐷 ∈ Grp ) |
19 |
12 14
|
grpidcl |
⊢ ( 𝐷 ∈ Grp → 0 ∈ 𝐾 ) |
20 |
17 18 19
|
3syl |
⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lshpsmreu |
⊢ ( 𝜑 → ∃! 𝑘 ∈ 𝐾 ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) |
22 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 · 𝑍 ) = ( 0 · 𝑍 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑘 = 0 → ( 𝑏 + ( 𝑘 · 𝑍 ) ) = ( 𝑏 + ( 0 · 𝑍 ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑘 = 0 → ( 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ↔ 𝑋 = ( 𝑏 + ( 0 · 𝑍 ) ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑘 = 0 → ( ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ↔ ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 0 · 𝑍 ) ) ) ) |
26 |
25
|
riota2 |
⊢ ( ( 0 ∈ 𝐾 ∧ ∃! 𝑘 ∈ 𝐾 ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) → ( ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 0 · 𝑍 ) ) ↔ ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) = 0 ) ) |
27 |
20 21 26
|
syl2anc |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 0 · 𝑍 ) ) ↔ ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) = 0 ) ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
29 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 = 𝑋 ) |
30 |
|
eqeq2 |
⊢ ( 𝑏 = 𝑋 → ( 𝑋 = 𝑏 ↔ 𝑋 = 𝑋 ) ) |
31 |
30
|
rspcev |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑋 = 𝑋 ) → ∃ 𝑏 ∈ 𝑈 𝑋 = 𝑏 ) |
32 |
28 29 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ∃ 𝑏 ∈ 𝑈 𝑋 = 𝑏 ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 → ∃ 𝑏 ∈ 𝑈 𝑋 = 𝑏 ) ) |
34 |
|
eleq1a |
⊢ ( 𝑏 ∈ 𝑈 → ( 𝑋 = 𝑏 → 𝑋 ∈ 𝑈 ) ) |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑈 → ( 𝑋 = 𝑏 → 𝑋 ∈ 𝑈 ) ) ) |
36 |
35
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ 𝑈 𝑋 = 𝑏 → 𝑋 ∈ 𝑈 ) ) |
37 |
33 36
|
impbid |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ∃ 𝑏 ∈ 𝑈 𝑋 = 𝑏 ) ) |
38 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
39 |
1 11 13 14 38
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( 0 · 𝑍 ) = ( 0g ‘ 𝑊 ) ) |
40 |
17 8 39
|
syl2anc |
⊢ ( 𝜑 → ( 0 · 𝑍 ) = ( 0g ‘ 𝑊 ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ( 0 · 𝑍 ) = ( 0g ‘ 𝑊 ) ) |
42 |
41
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ( 𝑏 + ( 0 · 𝑍 ) ) = ( 𝑏 + ( 0g ‘ 𝑊 ) ) ) |
43 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝑊 ∈ LVec ) |
44 |
43 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
45 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
46 |
45 5 17 7
|
lshplss |
⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
47 |
1 45
|
lssel |
⊢ ( ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑏 ∈ 𝑈 ) → 𝑏 ∈ 𝑉 ) |
48 |
46 47
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → 𝑏 ∈ 𝑉 ) |
49 |
1 2 38
|
lmod0vrid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 + ( 0g ‘ 𝑊 ) ) = 𝑏 ) |
50 |
44 48 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ( 𝑏 + ( 0g ‘ 𝑊 ) ) = 𝑏 ) |
51 |
42 50
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ( 𝑏 + ( 0 · 𝑍 ) ) = 𝑏 ) |
52 |
51
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ( 𝑋 = ( 𝑏 + ( 0 · 𝑍 ) ) ↔ 𝑋 = 𝑏 ) ) |
53 |
52
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝑈 ) → ( 𝑋 = 𝑏 ↔ 𝑋 = ( 𝑏 + ( 0 · 𝑍 ) ) ) ) |
54 |
53
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ 𝑈 𝑋 = 𝑏 ↔ ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 0 · 𝑍 ) ) ) ) |
55 |
37 54
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 0 · 𝑍 ) ) ) ) |
56 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ) |
57 |
56
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ) |
58 |
57
|
riotabidv |
⊢ ( 𝑥 = 𝑋 → ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) = ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ) |
59 |
|
riotaex |
⊢ ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ∈ V |
60 |
58 15 59
|
fvmpt |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐺 ‘ 𝑋 ) = ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ) |
61 |
|
oveq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 + ( 𝑘 · 𝑍 ) ) = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) |
62 |
61
|
eqeq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) ) |
63 |
62
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) |
64 |
63
|
a1i |
⊢ ( 𝑘 ∈ 𝐾 → ( ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) ) |
65 |
64
|
riotabiia |
⊢ ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑦 ∈ 𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) = ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) |
66 |
60 65
|
eqtrdi |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐺 ‘ 𝑋 ) = ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) ) |
67 |
9 66
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) ) |
68 |
67
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) = 0 ↔ ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑏 ∈ 𝑈 𝑋 = ( 𝑏 + ( 𝑘 · 𝑍 ) ) ) = 0 ) ) |
69 |
27 55 68
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝐺 ‘ 𝑋 ) = 0 ) ) |