| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpkrex.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
| 2 |
|
lshpkrex.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 3 |
|
lshpkrex.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
| 8 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 9 |
4 5 6 7 1 8
|
islshpsm |
⊢ ( 𝑊 ∈ LVec → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑈 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) ) ) |
| 10 |
|
simp3 |
⊢ ( ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑈 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) → ∃ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) |
| 11 |
9 10
|
biimtrdi |
⊢ ( 𝑊 ∈ LVec → ( 𝑈 ∈ 𝐻 → ∃ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) ) |
| 12 |
11
|
imp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻 ) → ∃ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) |
| 13 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 14 |
|
simp1l |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) → 𝑊 ∈ LVec ) |
| 15 |
|
simp1r |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) → 𝑈 ∈ 𝐻 ) |
| 16 |
|
simp2 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 17 |
|
simp3 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) → ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) |
| 18 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 19 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 20 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 21 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 22 |
4 13 5 7 1 14 15 16 17 18 19 20 21 2
|
lshpkrcl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) ∈ 𝐹 ) |
| 23 |
4 13 5 7 1 14 15 16 17 18 19 20 21 3
|
lshpkr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) → ( 𝐾 ‘ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) ) = 𝑈 ) |
| 24 |
|
fveqeq2 |
⊢ ( 𝑔 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) → ( ( 𝐾 ‘ 𝑔 ) = 𝑈 ↔ ( 𝐾 ‘ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) ) = 𝑈 ) ) |
| 25 |
24
|
rspcev |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) ∈ 𝐹 ∧ ( 𝐾 ‘ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) ) = 𝑈 ) → ∃ 𝑔 ∈ 𝐹 ( 𝐾 ‘ 𝑔 ) = 𝑈 ) |
| 26 |
22 23 25
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) ) → ∃ 𝑔 ∈ 𝐹 ( 𝐾 ‘ 𝑔 ) = 𝑈 ) |
| 27 |
26
|
rexlimdv3a |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻 ) → ( ∃ 𝑧 ∈ ( Base ‘ 𝑊 ) ( 𝑈 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) = ( Base ‘ 𝑊 ) → ∃ 𝑔 ∈ 𝐹 ( 𝐾 ‘ 𝑔 ) = 𝑈 ) ) |
| 28 |
12 27
|
mpd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻 ) → ∃ 𝑔 ∈ 𝐹 ( 𝐾 ‘ 𝑔 ) = 𝑈 ) |