Step |
Hyp |
Ref |
Expression |
1 |
|
lshpset2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lshpset2.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
3 |
|
lshpset2.z |
⊢ 0 = ( 0g ‘ 𝐷 ) |
4 |
|
lshpset2.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
5 |
|
lshpset2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
6 |
|
lshpset2.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
7 |
4 5 6
|
lshpkrex |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) → ∃ 𝑔 ∈ 𝐹 ( 𝐾 ‘ 𝑔 ) = 𝑠 ) |
8 |
|
eleq1 |
⊢ ( ( 𝐾 ‘ 𝑔 ) = 𝑠 → ( ( 𝐾 ‘ 𝑔 ) ∈ 𝐻 ↔ 𝑠 ∈ 𝐻 ) ) |
9 |
8
|
biimparc |
⊢ ( ( 𝑠 ∈ 𝐻 ∧ ( 𝐾 ‘ 𝑔 ) = 𝑠 ) → ( 𝐾 ‘ 𝑔 ) ∈ 𝐻 ) |
10 |
9
|
adantll |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) ∧ ( 𝐾 ‘ 𝑔 ) = 𝑠 ) → ( 𝐾 ‘ 𝑔 ) ∈ 𝐻 ) |
11 |
10
|
adantlr |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝐾 ‘ 𝑔 ) = 𝑠 ) → ( 𝐾 ‘ 𝑔 ) ∈ 𝐻 ) |
12 |
|
simplll |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝐾 ‘ 𝑔 ) = 𝑠 ) → 𝑊 ∈ LVec ) |
13 |
|
simplr |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝐾 ‘ 𝑔 ) = 𝑠 ) → 𝑔 ∈ 𝐹 ) |
14 |
1 2 3 4 5 6 12 13
|
lkrshp3 |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝐾 ‘ 𝑔 ) = 𝑠 ) → ( ( 𝐾 ‘ 𝑔 ) ∈ 𝐻 ↔ 𝑔 ≠ ( 𝑉 × { 0 } ) ) ) |
15 |
11 14
|
mpbid |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝐾 ‘ 𝑔 ) = 𝑠 ) → 𝑔 ≠ ( 𝑉 × { 0 } ) ) |
16 |
15
|
ex |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐾 ‘ 𝑔 ) = 𝑠 → 𝑔 ≠ ( 𝑉 × { 0 } ) ) ) |
17 |
|
eqimss2 |
⊢ ( ( 𝐾 ‘ 𝑔 ) = 𝑠 → 𝑠 ⊆ ( 𝐾 ‘ 𝑔 ) ) |
18 |
|
eqimss |
⊢ ( ( 𝐾 ‘ 𝑔 ) = 𝑠 → ( 𝐾 ‘ 𝑔 ) ⊆ 𝑠 ) |
19 |
17 18
|
eqssd |
⊢ ( ( 𝐾 ‘ 𝑔 ) = 𝑠 → 𝑠 = ( 𝐾 ‘ 𝑔 ) ) |
20 |
19
|
a1i |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐾 ‘ 𝑔 ) = 𝑠 → 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) |
21 |
16 20
|
jcad |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐾 ‘ 𝑔 ) = 𝑠 → ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) ) |
22 |
21
|
reximdva |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) → ( ∃ 𝑔 ∈ 𝐹 ( 𝐾 ‘ 𝑔 ) = 𝑠 → ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) ) |
23 |
7 22
|
mpd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑠 ∈ 𝐻 ) → ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) |
24 |
23
|
ex |
⊢ ( 𝑊 ∈ LVec → ( 𝑠 ∈ 𝐻 → ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) ) |
25 |
1 2 3 4 5 6
|
lkrshp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ 𝑔 ≠ ( 𝑉 × { 0 } ) ) → ( 𝐾 ‘ 𝑔 ) ∈ 𝐻 ) |
26 |
25
|
3adant3r |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) → ( 𝐾 ‘ 𝑔 ) ∈ 𝐻 ) |
27 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
28 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
29 |
1 27 28 4
|
islshp |
⊢ ( 𝑊 ∈ LVec → ( ( 𝐾 ‘ 𝑔 ) ∈ 𝐻 ↔ ( ( 𝐾 ‘ 𝑔 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑔 ) ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝑔 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) → ( ( 𝐾 ‘ 𝑔 ) ∈ 𝐻 ↔ ( ( 𝐾 ‘ 𝑔 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑔 ) ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝑔 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
31 |
26 30
|
mpbid |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) → ( ( 𝐾 ‘ 𝑔 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑔 ) ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝑔 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) |
32 |
|
eleq1 |
⊢ ( 𝑠 = ( 𝐾 ‘ 𝑔 ) → ( 𝑠 ∈ ( LSubSp ‘ 𝑊 ) ↔ ( 𝐾 ‘ 𝑔 ) ∈ ( LSubSp ‘ 𝑊 ) ) ) |
33 |
|
neeq1 |
⊢ ( 𝑠 = ( 𝐾 ‘ 𝑔 ) → ( 𝑠 ≠ 𝑉 ↔ ( 𝐾 ‘ 𝑔 ) ≠ 𝑉 ) ) |
34 |
|
uneq1 |
⊢ ( 𝑠 = ( 𝐾 ‘ 𝑔 ) → ( 𝑠 ∪ { 𝑣 } ) = ( ( 𝐾 ‘ 𝑔 ) ∪ { 𝑣 } ) ) |
35 |
34
|
fveqeq2d |
⊢ ( 𝑠 = ( 𝐾 ‘ 𝑔 ) → ( ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ↔ ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝑔 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) |
36 |
35
|
rexbidv |
⊢ ( 𝑠 = ( 𝐾 ‘ 𝑔 ) → ( ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ↔ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝑔 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) |
37 |
32 33 36
|
3anbi123d |
⊢ ( 𝑠 = ( 𝐾 ‘ 𝑔 ) → ( ( 𝑠 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) ↔ ( ( 𝐾 ‘ 𝑔 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑔 ) ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝑔 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) → ( ( 𝑠 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) ↔ ( ( 𝐾 ‘ 𝑔 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑔 ) ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝑔 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
39 |
38
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) → ( ( 𝑠 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) ↔ ( ( 𝐾 ‘ 𝑔 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝑔 ) ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝑔 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
40 |
31 39
|
mpbird |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) → ( 𝑠 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) ) |
41 |
40
|
rexlimdv3a |
⊢ ( 𝑊 ∈ LVec → ( ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) → ( 𝑠 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
42 |
1 27 28 4
|
islshp |
⊢ ( 𝑊 ∈ LVec → ( 𝑠 ∈ 𝐻 ↔ ( 𝑠 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
43 |
41 42
|
sylibrd |
⊢ ( 𝑊 ∈ LVec → ( ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) → 𝑠 ∈ 𝐻 ) ) |
44 |
24 43
|
impbid |
⊢ ( 𝑊 ∈ LVec → ( 𝑠 ∈ 𝐻 ↔ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ) ) |
45 |
44
|
abbi2dv |
⊢ ( 𝑊 ∈ LVec → 𝐻 = { 𝑠 ∣ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) } ) |