Step |
Hyp |
Ref |
Expression |
1 |
|
lkrshp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lkrshp.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
3 |
|
lkrshp.z |
⊢ 0 = ( 0g ‘ 𝐷 ) |
4 |
|
lkrshp.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
5 |
|
lkrshp.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
6 |
|
lkrshp.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
7 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → 𝑊 ∈ LMod ) |
9 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → 𝐺 ∈ 𝐹 ) |
10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
11 |
5 6 10
|
lkrlss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
12 |
8 9 11
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
13 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → 𝐺 ≠ ( 𝑉 × { 0 } ) ) |
14 |
2 3 1 5 6
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { 0 } ) ) ) |
15 |
8 9 14
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { 0 } ) ) ) |
16 |
15
|
necon3bid |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( ( 𝐾 ‘ 𝐺 ) ≠ 𝑉 ↔ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ) |
17 |
13 16
|
mpbird |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( 𝐾 ‘ 𝐺 ) ≠ 𝑉 ) |
18 |
|
eqid |
⊢ ( 1r ‘ 𝐷 ) = ( 1r ‘ 𝐷 ) |
19 |
2 3 18 1 5
|
lfl1 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ∃ 𝑣 ∈ 𝑉 ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) |
20 |
|
simp11 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) → 𝑊 ∈ LVec ) |
21 |
|
simp2 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) → 𝑣 ∈ 𝑉 ) |
22 |
|
simp12 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) → 𝐺 ∈ 𝐹 ) |
23 |
|
simp3 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) → ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) |
24 |
2
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐷 ∈ DivRing ) |
25 |
3 18
|
drngunz |
⊢ ( 𝐷 ∈ DivRing → ( 1r ‘ 𝐷 ) ≠ 0 ) |
26 |
20 24 25
|
3syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) → ( 1r ‘ 𝐷 ) ≠ 0 ) |
27 |
23 26
|
eqnetrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) → ( 𝐺 ‘ 𝑣 ) ≠ 0 ) |
28 |
|
simpl11 |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑣 ∈ ( 𝐾 ‘ 𝐺 ) ) → 𝑊 ∈ LVec ) |
29 |
|
simpl12 |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑣 ∈ ( 𝐾 ‘ 𝐺 ) ) → 𝐺 ∈ 𝐹 ) |
30 |
|
simpr |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑣 ∈ ( 𝐾 ‘ 𝐺 ) ) → 𝑣 ∈ ( 𝐾 ‘ 𝐺 ) ) |
31 |
2 3 5 6
|
lkrf0 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ ( 𝐾 ‘ 𝐺 ) ) → ( 𝐺 ‘ 𝑣 ) = 0 ) |
32 |
28 29 30 31
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑣 ∈ ( 𝐾 ‘ 𝐺 ) ) → ( 𝐺 ‘ 𝑣 ) = 0 ) |
33 |
32
|
ex |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) → ( 𝑣 ∈ ( 𝐾 ‘ 𝐺 ) → ( 𝐺 ‘ 𝑣 ) = 0 ) ) |
34 |
33
|
necon3ad |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) → ( ( 𝐺 ‘ 𝑣 ) ≠ 0 → ¬ 𝑣 ∈ ( 𝐾 ‘ 𝐺 ) ) ) |
35 |
27 34
|
mpd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) → ¬ 𝑣 ∈ ( 𝐾 ‘ 𝐺 ) ) |
36 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
37 |
1 36 5 6
|
lkrlsp3 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑣 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ¬ 𝑣 ∈ ( 𝐾 ‘ 𝐺 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝐺 ) ∪ { 𝑣 } ) ) = 𝑉 ) |
38 |
20 21 22 35 37
|
syl121anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝐺 ) ∪ { 𝑣 } ) ) = 𝑉 ) |
39 |
38
|
3expia |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) → ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝐺 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) |
40 |
39
|
reximdva |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( ∃ 𝑣 ∈ 𝑉 ( 𝐺 ‘ 𝑣 ) = ( 1r ‘ 𝐷 ) → ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝐺 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) |
41 |
19 40
|
mpd |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝐺 ) ∪ { 𝑣 } ) ) = 𝑉 ) |
42 |
1 36 10 4
|
islshp |
⊢ ( 𝑊 ∈ LVec → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ↔ ( ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝐺 ) ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝐺 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
43 |
42
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ↔ ( ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝐾 ‘ 𝐺 ) ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐾 ‘ 𝐺 ) ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
44 |
12 17 41 43
|
mpbir3and |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) |