Metamath Proof Explorer


Theorem lkrshp3

Description: The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 17-Jul-2014)

Ref Expression
Hypotheses lkrshp3.v 𝑉 = ( Base ‘ 𝑊 )
lkrshp3.d 𝐷 = ( Scalar ‘ 𝑊 )
lkrshp3.o 0 = ( 0g𝐷 )
lkrshp3.h 𝐻 = ( LSHyp ‘ 𝑊 )
lkrshp3.f 𝐹 = ( LFnl ‘ 𝑊 )
lkrshp3.k 𝐾 = ( LKer ‘ 𝑊 )
lkrshp3.w ( 𝜑𝑊 ∈ LVec )
lkrshp3.g ( 𝜑𝐺𝐹 )
Assertion lkrshp3 ( 𝜑 → ( ( 𝐾𝐺 ) ∈ 𝐻𝐺 ≠ ( 𝑉 × { 0 } ) ) )

Proof

Step Hyp Ref Expression
1 lkrshp3.v 𝑉 = ( Base ‘ 𝑊 )
2 lkrshp3.d 𝐷 = ( Scalar ‘ 𝑊 )
3 lkrshp3.o 0 = ( 0g𝐷 )
4 lkrshp3.h 𝐻 = ( LSHyp ‘ 𝑊 )
5 lkrshp3.f 𝐹 = ( LFnl ‘ 𝑊 )
6 lkrshp3.k 𝐾 = ( LKer ‘ 𝑊 )
7 lkrshp3.w ( 𝜑𝑊 ∈ LVec )
8 lkrshp3.g ( 𝜑𝐺𝐹 )
9 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
10 7 9 syl ( 𝜑𝑊 ∈ LMod )
11 10 adantr ( ( 𝜑 ∧ ( 𝐾𝐺 ) ∈ 𝐻 ) → 𝑊 ∈ LMod )
12 simpr ( ( 𝜑 ∧ ( 𝐾𝐺 ) ∈ 𝐻 ) → ( 𝐾𝐺 ) ∈ 𝐻 )
13 1 4 11 12 lshpne ( ( 𝜑 ∧ ( 𝐾𝐺 ) ∈ 𝐻 ) → ( 𝐾𝐺 ) ≠ 𝑉 )
14 2 3 1 5 6 lkr0f ( ( 𝑊 ∈ LMod ∧ 𝐺𝐹 ) → ( ( 𝐾𝐺 ) = 𝑉𝐺 = ( 𝑉 × { 0 } ) ) )
15 10 8 14 syl2anc ( 𝜑 → ( ( 𝐾𝐺 ) = 𝑉𝐺 = ( 𝑉 × { 0 } ) ) )
16 15 adantr ( ( 𝜑 ∧ ( 𝐾𝐺 ) ∈ 𝐻 ) → ( ( 𝐾𝐺 ) = 𝑉𝐺 = ( 𝑉 × { 0 } ) ) )
17 16 necon3bid ( ( 𝜑 ∧ ( 𝐾𝐺 ) ∈ 𝐻 ) → ( ( 𝐾𝐺 ) ≠ 𝑉𝐺 ≠ ( 𝑉 × { 0 } ) ) )
18 13 17 mpbid ( ( 𝜑 ∧ ( 𝐾𝐺 ) ∈ 𝐻 ) → 𝐺 ≠ ( 𝑉 × { 0 } ) )
19 7 adantr ( ( 𝜑𝐺 ≠ ( 𝑉 × { 0 } ) ) → 𝑊 ∈ LVec )
20 8 adantr ( ( 𝜑𝐺 ≠ ( 𝑉 × { 0 } ) ) → 𝐺𝐹 )
21 simpr ( ( 𝜑𝐺 ≠ ( 𝑉 × { 0 } ) ) → 𝐺 ≠ ( 𝑉 × { 0 } ) )
22 1 2 3 4 5 6 lkrshp ( ( 𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( 𝐾𝐺 ) ∈ 𝐻 )
23 19 20 21 22 syl3anc ( ( 𝜑𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( 𝐾𝐺 ) ∈ 𝐻 )
24 18 23 impbida ( 𝜑 → ( ( 𝐾𝐺 ) ∈ 𝐻𝐺 ≠ ( 𝑉 × { 0 } ) ) )