Step |
Hyp |
Ref |
Expression |
1 |
|
lkrshp3.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lkrshp3.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
3 |
|
lkrshp3.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
4 |
|
lkrshp3.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
5 |
|
lkrshp3.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
6 |
|
lkrshp3.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
7 |
|
lkrshp3.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
8 |
|
lkrshp3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
10 |
7 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) → 𝑊 ∈ LMod ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) |
13 |
1 4 11 12
|
lshpne |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) → ( 𝐾 ‘ 𝐺 ) ≠ 𝑉 ) |
14 |
2 3 1 5 6
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { 0 } ) ) ) |
15 |
10 8 14
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { 0 } ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { 0 } ) ) ) |
17 |
16
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) → ( ( 𝐾 ‘ 𝐺 ) ≠ 𝑉 ↔ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ) |
18 |
13 17
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) → 𝐺 ≠ ( 𝑉 × { 0 } ) ) |
19 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → 𝑊 ∈ LVec ) |
20 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → 𝐺 ∈ 𝐹 ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → 𝐺 ≠ ( 𝑉 × { 0 } ) ) |
22 |
1 2 3 4 5 6
|
lkrshp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) |
23 |
19 20 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { 0 } ) ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) |
24 |
18 23
|
impbida |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ↔ 𝐺 ≠ ( 𝑉 × { 0 } ) ) ) |