Step |
Hyp |
Ref |
Expression |
1 |
|
lkrshp3.v |
|- V = ( Base ` W ) |
2 |
|
lkrshp3.d |
|- D = ( Scalar ` W ) |
3 |
|
lkrshp3.o |
|- .0. = ( 0g ` D ) |
4 |
|
lkrshp3.h |
|- H = ( LSHyp ` W ) |
5 |
|
lkrshp3.f |
|- F = ( LFnl ` W ) |
6 |
|
lkrshp3.k |
|- K = ( LKer ` W ) |
7 |
|
lkrshp3.w |
|- ( ph -> W e. LVec ) |
8 |
|
lkrshp3.g |
|- ( ph -> G e. F ) |
9 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
10 |
7 9
|
syl |
|- ( ph -> W e. LMod ) |
11 |
10
|
adantr |
|- ( ( ph /\ ( K ` G ) e. H ) -> W e. LMod ) |
12 |
|
simpr |
|- ( ( ph /\ ( K ` G ) e. H ) -> ( K ` G ) e. H ) |
13 |
1 4 11 12
|
lshpne |
|- ( ( ph /\ ( K ` G ) e. H ) -> ( K ` G ) =/= V ) |
14 |
2 3 1 5 6
|
lkr0f |
|- ( ( W e. LMod /\ G e. F ) -> ( ( K ` G ) = V <-> G = ( V X. { .0. } ) ) ) |
15 |
10 8 14
|
syl2anc |
|- ( ph -> ( ( K ` G ) = V <-> G = ( V X. { .0. } ) ) ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( K ` G ) e. H ) -> ( ( K ` G ) = V <-> G = ( V X. { .0. } ) ) ) |
17 |
16
|
necon3bid |
|- ( ( ph /\ ( K ` G ) e. H ) -> ( ( K ` G ) =/= V <-> G =/= ( V X. { .0. } ) ) ) |
18 |
13 17
|
mpbid |
|- ( ( ph /\ ( K ` G ) e. H ) -> G =/= ( V X. { .0. } ) ) |
19 |
7
|
adantr |
|- ( ( ph /\ G =/= ( V X. { .0. } ) ) -> W e. LVec ) |
20 |
8
|
adantr |
|- ( ( ph /\ G =/= ( V X. { .0. } ) ) -> G e. F ) |
21 |
|
simpr |
|- ( ( ph /\ G =/= ( V X. { .0. } ) ) -> G =/= ( V X. { .0. } ) ) |
22 |
1 2 3 4 5 6
|
lkrshp |
|- ( ( W e. LVec /\ G e. F /\ G =/= ( V X. { .0. } ) ) -> ( K ` G ) e. H ) |
23 |
19 20 21 22
|
syl3anc |
|- ( ( ph /\ G =/= ( V X. { .0. } ) ) -> ( K ` G ) e. H ) |
24 |
18 23
|
impbida |
|- ( ph -> ( ( K ` G ) e. H <-> G =/= ( V X. { .0. } ) ) ) |