Metamath Proof Explorer


Theorem lkrshpor

Description: The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014)

Ref Expression
Hypotheses lkrshpor.v 𝑉 = ( Base ‘ 𝑊 )
lkrshpor.h 𝐻 = ( LSHyp ‘ 𝑊 )
lkrshpor.f 𝐹 = ( LFnl ‘ 𝑊 )
lkrshpor.k 𝐾 = ( LKer ‘ 𝑊 )
lkrshpor.w ( 𝜑𝑊 ∈ LVec )
lkrshpor.g ( 𝜑𝐺𝐹 )
Assertion lkrshpor ( 𝜑 → ( ( 𝐾𝐺 ) ∈ 𝐻 ∨ ( 𝐾𝐺 ) = 𝑉 ) )

Proof

Step Hyp Ref Expression
1 lkrshpor.v 𝑉 = ( Base ‘ 𝑊 )
2 lkrshpor.h 𝐻 = ( LSHyp ‘ 𝑊 )
3 lkrshpor.f 𝐹 = ( LFnl ‘ 𝑊 )
4 lkrshpor.k 𝐾 = ( LKer ‘ 𝑊 )
5 lkrshpor.w ( 𝜑𝑊 ∈ LVec )
6 lkrshpor.g ( 𝜑𝐺𝐹 )
7 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
8 5 7 syl ( 𝜑𝑊 ∈ LMod )
9 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
10 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
11 9 10 1 3 4 lkr0f ( ( 𝑊 ∈ LMod ∧ 𝐺𝐹 ) → ( ( 𝐾𝐺 ) = 𝑉𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )
12 8 6 11 syl2anc ( 𝜑 → ( ( 𝐾𝐺 ) = 𝑉𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )
13 12 biimpar ( ( 𝜑𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( 𝐾𝐺 ) = 𝑉 )
14 13 olcd ( ( 𝜑𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( 𝐾𝐺 ) ∈ 𝐻 ∨ ( 𝐾𝐺 ) = 𝑉 ) )
15 5 adantr ( ( 𝜑𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝑊 ∈ LVec )
16 6 adantr ( ( 𝜑𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝐺𝐹 )
17 simpr ( ( 𝜑𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )
18 1 9 10 2 3 4 lkrshp ( ( 𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( 𝐾𝐺 ) ∈ 𝐻 )
19 15 16 17 18 syl3anc ( ( 𝜑𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( 𝐾𝐺 ) ∈ 𝐻 )
20 19 orcd ( ( 𝜑𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( 𝐾𝐺 ) ∈ 𝐻 ∨ ( 𝐾𝐺 ) = 𝑉 ) )
21 14 20 pm2.61dane ( 𝜑 → ( ( 𝐾𝐺 ) ∈ 𝐻 ∨ ( 𝐾𝐺 ) = 𝑉 ) )