Step |
Hyp |
Ref |
Expression |
1 |
|
lkrshpor.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lkrshpor.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
3 |
|
lkrshpor.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
4 |
|
lkrshpor.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
5 |
|
lkrshpor.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
lkrshpor.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
7 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
11 |
9 10 1 3 4
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) |
12 |
8 6 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) |
13 |
12
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( 𝐾 ‘ 𝐺 ) = 𝑉 ) |
14 |
13
|
olcd |
⊢ ( ( 𝜑 ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ∨ ( 𝐾 ‘ 𝐺 ) = 𝑉 ) ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝑊 ∈ LVec ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝐺 ∈ 𝐹 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
18 |
1 9 10 2 3 4
|
lkrshp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) |
19 |
15 16 17 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) |
20 |
19
|
orcd |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ∨ ( 𝐾 ‘ 𝐺 ) = 𝑉 ) ) |
21 |
14 20
|
pm2.61dane |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ∨ ( 𝐾 ‘ 𝐺 ) = 𝑉 ) ) |