| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkrshpor.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lkrshpor.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
| 3 |
|
lkrshpor.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 4 |
|
lkrshpor.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
| 5 |
|
lkrshpor.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
lkrshpor.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 7 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 11 |
9 10 1 3 4
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) |
| 12 |
8 6 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) |
| 13 |
12
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( 𝐾 ‘ 𝐺 ) = 𝑉 ) |
| 14 |
13
|
olcd |
⊢ ( ( 𝜑 ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ∨ ( 𝐾 ‘ 𝐺 ) = 𝑉 ) ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝑊 ∈ LVec ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝐺 ∈ 𝐹 ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 18 |
1 9 10 2 3 4
|
lkrshp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) |
| 19 |
15 16 17 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ) |
| 20 |
19
|
orcd |
⊢ ( ( 𝜑 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ∨ ( 𝐾 ‘ 𝐺 ) = 𝑉 ) ) |
| 21 |
14 20
|
pm2.61dane |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) ∈ 𝐻 ∨ ( 𝐾 ‘ 𝐺 ) = 𝑉 ) ) |