Step |
Hyp |
Ref |
Expression |
1 |
|
lshpset2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lshpset2.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
3 |
|
lshpset2.z |
⊢ 0 = ( 0g ‘ 𝐷 ) |
4 |
|
lshpset2.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
5 |
|
lshpset2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
6 |
|
lshpset2.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
7 |
1 2 3 4 5 6
|
lshpset2N |
⊢ ( 𝑊 ∈ LVec → 𝐻 = { 𝑠 ∣ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) } ) |
8 |
7
|
eleq2d |
⊢ ( 𝑊 ∈ LVec → ( 𝑈 ∈ 𝐻 ↔ 𝑈 ∈ { 𝑠 ∣ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) } ) ) |
9 |
|
elex |
⊢ ( 𝑈 ∈ { 𝑠 ∣ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) } → 𝑈 ∈ V ) |
10 |
9
|
adantl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ { 𝑠 ∣ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) } ) → 𝑈 ∈ V ) |
11 |
|
fvex |
⊢ ( 𝐾 ‘ 𝑔 ) ∈ V |
12 |
|
eleq1 |
⊢ ( 𝑈 = ( 𝐾 ‘ 𝑔 ) → ( 𝑈 ∈ V ↔ ( 𝐾 ‘ 𝑔 ) ∈ V ) ) |
13 |
11 12
|
mpbiri |
⊢ ( 𝑈 = ( 𝐾 ‘ 𝑔 ) → 𝑈 ∈ V ) |
14 |
13
|
adantl |
⊢ ( ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑈 = ( 𝐾 ‘ 𝑔 ) ) → 𝑈 ∈ V ) |
15 |
14
|
rexlimivw |
⊢ ( ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑈 = ( 𝐾 ‘ 𝑔 ) ) → 𝑈 ∈ V ) |
16 |
15
|
adantl |
⊢ ( ( 𝑊 ∈ LVec ∧ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑈 = ( 𝐾 ‘ 𝑔 ) ) ) → 𝑈 ∈ V ) |
17 |
|
eqeq1 |
⊢ ( 𝑠 = 𝑈 → ( 𝑠 = ( 𝐾 ‘ 𝑔 ) ↔ 𝑈 = ( 𝐾 ‘ 𝑔 ) ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑠 = 𝑈 → ( ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ↔ ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑈 = ( 𝐾 ‘ 𝑔 ) ) ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝑠 = 𝑈 → ( ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑈 = ( 𝐾 ‘ 𝑔 ) ) ) ) |
20 |
19
|
elabg |
⊢ ( 𝑈 ∈ V → ( 𝑈 ∈ { 𝑠 ∣ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) } ↔ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑈 = ( 𝐾 ‘ 𝑔 ) ) ) ) |
21 |
10 16 20
|
pm5.21nd |
⊢ ( 𝑊 ∈ LVec → ( 𝑈 ∈ { 𝑠 ∣ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑠 = ( 𝐾 ‘ 𝑔 ) ) } ↔ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑈 = ( 𝐾 ‘ 𝑔 ) ) ) ) |
22 |
8 21
|
bitrd |
⊢ ( 𝑊 ∈ LVec → ( 𝑈 ∈ 𝐻 ↔ ∃ 𝑔 ∈ 𝐹 ( 𝑔 ≠ ( 𝑉 × { 0 } ) ∧ 𝑈 = ( 𝐾 ‘ 𝑔 ) ) ) ) |