Step |
Hyp |
Ref |
Expression |
1 |
|
lshpset2.v |
|- V = ( Base ` W ) |
2 |
|
lshpset2.d |
|- D = ( Scalar ` W ) |
3 |
|
lshpset2.z |
|- .0. = ( 0g ` D ) |
4 |
|
lshpset2.h |
|- H = ( LSHyp ` W ) |
5 |
|
lshpset2.f |
|- F = ( LFnl ` W ) |
6 |
|
lshpset2.k |
|- K = ( LKer ` W ) |
7 |
1 2 3 4 5 6
|
lshpset2N |
|- ( W e. LVec -> H = { s | E. g e. F ( g =/= ( V X. { .0. } ) /\ s = ( K ` g ) ) } ) |
8 |
7
|
eleq2d |
|- ( W e. LVec -> ( U e. H <-> U e. { s | E. g e. F ( g =/= ( V X. { .0. } ) /\ s = ( K ` g ) ) } ) ) |
9 |
|
elex |
|- ( U e. { s | E. g e. F ( g =/= ( V X. { .0. } ) /\ s = ( K ` g ) ) } -> U e. _V ) |
10 |
9
|
adantl |
|- ( ( W e. LVec /\ U e. { s | E. g e. F ( g =/= ( V X. { .0. } ) /\ s = ( K ` g ) ) } ) -> U e. _V ) |
11 |
|
fvex |
|- ( K ` g ) e. _V |
12 |
|
eleq1 |
|- ( U = ( K ` g ) -> ( U e. _V <-> ( K ` g ) e. _V ) ) |
13 |
11 12
|
mpbiri |
|- ( U = ( K ` g ) -> U e. _V ) |
14 |
13
|
adantl |
|- ( ( g =/= ( V X. { .0. } ) /\ U = ( K ` g ) ) -> U e. _V ) |
15 |
14
|
rexlimivw |
|- ( E. g e. F ( g =/= ( V X. { .0. } ) /\ U = ( K ` g ) ) -> U e. _V ) |
16 |
15
|
adantl |
|- ( ( W e. LVec /\ E. g e. F ( g =/= ( V X. { .0. } ) /\ U = ( K ` g ) ) ) -> U e. _V ) |
17 |
|
eqeq1 |
|- ( s = U -> ( s = ( K ` g ) <-> U = ( K ` g ) ) ) |
18 |
17
|
anbi2d |
|- ( s = U -> ( ( g =/= ( V X. { .0. } ) /\ s = ( K ` g ) ) <-> ( g =/= ( V X. { .0. } ) /\ U = ( K ` g ) ) ) ) |
19 |
18
|
rexbidv |
|- ( s = U -> ( E. g e. F ( g =/= ( V X. { .0. } ) /\ s = ( K ` g ) ) <-> E. g e. F ( g =/= ( V X. { .0. } ) /\ U = ( K ` g ) ) ) ) |
20 |
19
|
elabg |
|- ( U e. _V -> ( U e. { s | E. g e. F ( g =/= ( V X. { .0. } ) /\ s = ( K ` g ) ) } <-> E. g e. F ( g =/= ( V X. { .0. } ) /\ U = ( K ` g ) ) ) ) |
21 |
10 16 20
|
pm5.21nd |
|- ( W e. LVec -> ( U e. { s | E. g e. F ( g =/= ( V X. { .0. } ) /\ s = ( K ` g ) ) } <-> E. g e. F ( g =/= ( V X. { .0. } ) /\ U = ( K ` g ) ) ) ) |
22 |
8 21
|
bitrd |
|- ( W e. LVec -> ( U e. H <-> E. g e. F ( g =/= ( V X. { .0. } ) /\ U = ( K ` g ) ) ) ) |