| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfl1dim.v |
|- V = ( Base ` W ) |
| 2 |
|
lfl1dim.d |
|- D = ( Scalar ` W ) |
| 3 |
|
lfl1dim.f |
|- F = ( LFnl ` W ) |
| 4 |
|
lfl1dim.l |
|- L = ( LKer ` W ) |
| 5 |
|
lfl1dim.k |
|- K = ( Base ` D ) |
| 6 |
|
lfl1dim.t |
|- .x. = ( .r ` D ) |
| 7 |
|
lfl1dim.w |
|- ( ph -> W e. LVec ) |
| 8 |
|
lfl1dim.g |
|- ( ph -> G e. F ) |
| 9 |
|
df-rab |
|- { g e. F | ( L ` G ) C_ ( L ` g ) } = { g | ( g e. F /\ ( L ` G ) C_ ( L ` g ) ) } |
| 10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 11 |
7 10
|
syl |
|- ( ph -> W e. LMod ) |
| 12 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
| 13 |
2 5 12
|
lmod0cl |
|- ( W e. LMod -> ( 0g ` D ) e. K ) |
| 14 |
11 13
|
syl |
|- ( ph -> ( 0g ` D ) e. K ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ g = ( V X. { ( 0g ` D ) } ) ) -> ( 0g ` D ) e. K ) |
| 16 |
|
simpr |
|- ( ( ( ph /\ g e. F ) /\ g = ( V X. { ( 0g ` D ) } ) ) -> g = ( V X. { ( 0g ` D ) } ) ) |
| 17 |
11
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ g = ( V X. { ( 0g ` D ) } ) ) -> W e. LMod ) |
| 18 |
8
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ g = ( V X. { ( 0g ` D ) } ) ) -> G e. F ) |
| 19 |
1 2 3 5 6 12 17 18
|
lfl0sc |
|- ( ( ( ph /\ g e. F ) /\ g = ( V X. { ( 0g ` D ) } ) ) -> ( G oF .x. ( V X. { ( 0g ` D ) } ) ) = ( V X. { ( 0g ` D ) } ) ) |
| 20 |
16 19
|
eqtr4d |
|- ( ( ( ph /\ g e. F ) /\ g = ( V X. { ( 0g ` D ) } ) ) -> g = ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) |
| 21 |
|
sneq |
|- ( k = ( 0g ` D ) -> { k } = { ( 0g ` D ) } ) |
| 22 |
21
|
xpeq2d |
|- ( k = ( 0g ` D ) -> ( V X. { k } ) = ( V X. { ( 0g ` D ) } ) ) |
| 23 |
22
|
oveq2d |
|- ( k = ( 0g ` D ) -> ( G oF .x. ( V X. { k } ) ) = ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) |
| 24 |
23
|
rspceeqv |
|- ( ( ( 0g ` D ) e. K /\ g = ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) -> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) |
| 25 |
15 20 24
|
syl2anc |
|- ( ( ( ph /\ g e. F ) /\ g = ( V X. { ( 0g ` D ) } ) ) -> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) |
| 26 |
25
|
a1d |
|- ( ( ( ph /\ g e. F ) /\ g = ( V X. { ( 0g ` D ) } ) ) -> ( ( L ` G ) C_ ( L ` g ) -> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) ) |
| 27 |
14
|
ad3antrrr |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> ( 0g ` D ) e. K ) |
| 28 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> W e. LMod ) |
| 29 |
|
simpllr |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> g e. F ) |
| 30 |
1 3 4 28 29
|
lkrssv |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> ( L ` g ) C_ V ) |
| 31 |
11
|
adantr |
|- ( ( ph /\ g e. F ) -> W e. LMod ) |
| 32 |
8
|
adantr |
|- ( ( ph /\ g e. F ) -> G e. F ) |
| 33 |
2 12 1 3 4
|
lkr0f |
|- ( ( W e. LMod /\ G e. F ) -> ( ( L ` G ) = V <-> G = ( V X. { ( 0g ` D ) } ) ) ) |
| 34 |
31 32 33
|
syl2anc |
|- ( ( ph /\ g e. F ) -> ( ( L ` G ) = V <-> G = ( V X. { ( 0g ` D ) } ) ) ) |
| 35 |
34
|
biimpar |
|- ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) -> ( L ` G ) = V ) |
| 36 |
35
|
sseq1d |
|- ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) -> ( ( L ` G ) C_ ( L ` g ) <-> V C_ ( L ` g ) ) ) |
| 37 |
36
|
biimpa |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> V C_ ( L ` g ) ) |
| 38 |
30 37
|
eqssd |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> ( L ` g ) = V ) |
| 39 |
2 12 1 3 4
|
lkr0f |
|- ( ( W e. LMod /\ g e. F ) -> ( ( L ` g ) = V <-> g = ( V X. { ( 0g ` D ) } ) ) ) |
| 40 |
28 29 39
|
syl2anc |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> ( ( L ` g ) = V <-> g = ( V X. { ( 0g ` D ) } ) ) ) |
| 41 |
38 40
|
mpbid |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> g = ( V X. { ( 0g ` D ) } ) ) |
| 42 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> G e. F ) |
| 43 |
1 2 3 5 6 12 28 42
|
lfl0sc |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> ( G oF .x. ( V X. { ( 0g ` D ) } ) ) = ( V X. { ( 0g ` D ) } ) ) |
| 44 |
41 43
|
eqtr4d |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> g = ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) |
| 45 |
27 44 24
|
syl2anc |
|- ( ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) /\ ( L ` G ) C_ ( L ` g ) ) -> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) |
| 46 |
45
|
ex |
|- ( ( ( ph /\ g e. F ) /\ G = ( V X. { ( 0g ` D ) } ) ) -> ( ( L ` G ) C_ ( L ` g ) -> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) ) |
| 47 |
|
eqid |
|- ( LSHyp ` W ) = ( LSHyp ` W ) |
| 48 |
7
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) -> W e. LVec ) |
| 49 |
8
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) -> G e. F ) |
| 50 |
|
simprr |
|- ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) -> G =/= ( V X. { ( 0g ` D ) } ) ) |
| 51 |
1 2 12 47 3 4
|
lkrshp |
|- ( ( W e. LVec /\ G e. F /\ G =/= ( V X. { ( 0g ` D ) } ) ) -> ( L ` G ) e. ( LSHyp ` W ) ) |
| 52 |
48 49 50 51
|
syl3anc |
|- ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) -> ( L ` G ) e. ( LSHyp ` W ) ) |
| 53 |
|
simplr |
|- ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) -> g e. F ) |
| 54 |
|
simprl |
|- ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) -> g =/= ( V X. { ( 0g ` D ) } ) ) |
| 55 |
1 2 12 47 3 4
|
lkrshp |
|- ( ( W e. LVec /\ g e. F /\ g =/= ( V X. { ( 0g ` D ) } ) ) -> ( L ` g ) e. ( LSHyp ` W ) ) |
| 56 |
48 53 54 55
|
syl3anc |
|- ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) -> ( L ` g ) e. ( LSHyp ` W ) ) |
| 57 |
47 48 52 56
|
lshpcmp |
|- ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) -> ( ( L ` G ) C_ ( L ` g ) <-> ( L ` G ) = ( L ` g ) ) ) |
| 58 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) /\ ( L ` G ) = ( L ` g ) ) -> W e. LVec ) |
| 59 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) /\ ( L ` G ) = ( L ` g ) ) -> G e. F ) |
| 60 |
|
simpllr |
|- ( ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) /\ ( L ` G ) = ( L ` g ) ) -> g e. F ) |
| 61 |
|
simpr |
|- ( ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) /\ ( L ` G ) = ( L ` g ) ) -> ( L ` G ) = ( L ` g ) ) |
| 62 |
2 5 6 1 3 4
|
eqlkr2 |
|- ( ( W e. LVec /\ ( G e. F /\ g e. F ) /\ ( L ` G ) = ( L ` g ) ) -> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) |
| 63 |
58 59 60 61 62
|
syl121anc |
|- ( ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) /\ ( L ` G ) = ( L ` g ) ) -> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) |
| 64 |
63
|
ex |
|- ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) -> ( ( L ` G ) = ( L ` g ) -> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) ) |
| 65 |
57 64
|
sylbid |
|- ( ( ( ph /\ g e. F ) /\ ( g =/= ( V X. { ( 0g ` D ) } ) /\ G =/= ( V X. { ( 0g ` D ) } ) ) ) -> ( ( L ` G ) C_ ( L ` g ) -> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) ) |
| 66 |
26 46 65
|
pm2.61da2ne |
|- ( ( ph /\ g e. F ) -> ( ( L ` G ) C_ ( L ` g ) -> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) ) |
| 67 |
7
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ k e. K ) -> W e. LVec ) |
| 68 |
8
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ k e. K ) -> G e. F ) |
| 69 |
|
simpr |
|- ( ( ( ph /\ g e. F ) /\ k e. K ) -> k e. K ) |
| 70 |
1 2 5 6 3 4 67 68 69
|
lkrscss |
|- ( ( ( ph /\ g e. F ) /\ k e. K ) -> ( L ` G ) C_ ( L ` ( G oF .x. ( V X. { k } ) ) ) ) |
| 71 |
70
|
ex |
|- ( ( ph /\ g e. F ) -> ( k e. K -> ( L ` G ) C_ ( L ` ( G oF .x. ( V X. { k } ) ) ) ) ) |
| 72 |
|
fveq2 |
|- ( g = ( G oF .x. ( V X. { k } ) ) -> ( L ` g ) = ( L ` ( G oF .x. ( V X. { k } ) ) ) ) |
| 73 |
72
|
sseq2d |
|- ( g = ( G oF .x. ( V X. { k } ) ) -> ( ( L ` G ) C_ ( L ` g ) <-> ( L ` G ) C_ ( L ` ( G oF .x. ( V X. { k } ) ) ) ) ) |
| 74 |
73
|
biimprcd |
|- ( ( L ` G ) C_ ( L ` ( G oF .x. ( V X. { k } ) ) ) -> ( g = ( G oF .x. ( V X. { k } ) ) -> ( L ` G ) C_ ( L ` g ) ) ) |
| 75 |
71 74
|
syl6 |
|- ( ( ph /\ g e. F ) -> ( k e. K -> ( g = ( G oF .x. ( V X. { k } ) ) -> ( L ` G ) C_ ( L ` g ) ) ) ) |
| 76 |
75
|
rexlimdv |
|- ( ( ph /\ g e. F ) -> ( E. k e. K g = ( G oF .x. ( V X. { k } ) ) -> ( L ` G ) C_ ( L ` g ) ) ) |
| 77 |
66 76
|
impbid |
|- ( ( ph /\ g e. F ) -> ( ( L ` G ) C_ ( L ` g ) <-> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) ) |
| 78 |
77
|
pm5.32da |
|- ( ph -> ( ( g e. F /\ ( L ` G ) C_ ( L ` g ) ) <-> ( g e. F /\ E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) ) ) |
| 79 |
11
|
adantr |
|- ( ( ph /\ k e. K ) -> W e. LMod ) |
| 80 |
8
|
adantr |
|- ( ( ph /\ k e. K ) -> G e. F ) |
| 81 |
|
simpr |
|- ( ( ph /\ k e. K ) -> k e. K ) |
| 82 |
1 2 5 6 3 79 80 81
|
lflvscl |
|- ( ( ph /\ k e. K ) -> ( G oF .x. ( V X. { k } ) ) e. F ) |
| 83 |
|
eleq1a |
|- ( ( G oF .x. ( V X. { k } ) ) e. F -> ( g = ( G oF .x. ( V X. { k } ) ) -> g e. F ) ) |
| 84 |
82 83
|
syl |
|- ( ( ph /\ k e. K ) -> ( g = ( G oF .x. ( V X. { k } ) ) -> g e. F ) ) |
| 85 |
84
|
pm4.71rd |
|- ( ( ph /\ k e. K ) -> ( g = ( G oF .x. ( V X. { k } ) ) <-> ( g e. F /\ g = ( G oF .x. ( V X. { k } ) ) ) ) ) |
| 86 |
85
|
rexbidva |
|- ( ph -> ( E. k e. K g = ( G oF .x. ( V X. { k } ) ) <-> E. k e. K ( g e. F /\ g = ( G oF .x. ( V X. { k } ) ) ) ) ) |
| 87 |
|
r19.42v |
|- ( E. k e. K ( g e. F /\ g = ( G oF .x. ( V X. { k } ) ) ) <-> ( g e. F /\ E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) ) |
| 88 |
86 87
|
bitr2di |
|- ( ph -> ( ( g e. F /\ E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) <-> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) ) |
| 89 |
78 88
|
bitrd |
|- ( ph -> ( ( g e. F /\ ( L ` G ) C_ ( L ` g ) ) <-> E. k e. K g = ( G oF .x. ( V X. { k } ) ) ) ) |
| 90 |
89
|
abbidv |
|- ( ph -> { g | ( g e. F /\ ( L ` G ) C_ ( L ` g ) ) } = { g | E. k e. K g = ( G oF .x. ( V X. { k } ) ) } ) |
| 91 |
9 90
|
eqtrid |
|- ( ph -> { g e. F | ( L ` G ) C_ ( L ` g ) } = { g | E. k e. K g = ( G oF .x. ( V X. { k } ) ) } ) |