Description: The (right vector space) scalar product of a functional with zero is the zero functional. Note that the first occurrence of ( V X. { .0. } ) represents the zero scalar, and the second is the zero functional. (Contributed by NM, 7-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lfl0sc.v | |- V = ( Base ` W ) |
|
lfl0sc.d | |- D = ( Scalar ` W ) |
||
lfl0sc.f | |- F = ( LFnl ` W ) |
||
lfl0sc.k | |- K = ( Base ` D ) |
||
lfl0sc.t | |- .x. = ( .r ` D ) |
||
lfl0sc.o | |- .0. = ( 0g ` D ) |
||
lfl0sc.w | |- ( ph -> W e. LMod ) |
||
lfl0sc.g | |- ( ph -> G e. F ) |
||
Assertion | lfl0sc | |- ( ph -> ( G oF .x. ( V X. { .0. } ) ) = ( V X. { .0. } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfl0sc.v | |- V = ( Base ` W ) |
|
2 | lfl0sc.d | |- D = ( Scalar ` W ) |
|
3 | lfl0sc.f | |- F = ( LFnl ` W ) |
|
4 | lfl0sc.k | |- K = ( Base ` D ) |
|
5 | lfl0sc.t | |- .x. = ( .r ` D ) |
|
6 | lfl0sc.o | |- .0. = ( 0g ` D ) |
|
7 | lfl0sc.w | |- ( ph -> W e. LMod ) |
|
8 | lfl0sc.g | |- ( ph -> G e. F ) |
|
9 | 1 | fvexi | |- V e. _V |
10 | 9 | a1i | |- ( ph -> V e. _V ) |
11 | 2 4 1 3 | lflf | |- ( ( W e. LMod /\ G e. F ) -> G : V --> K ) |
12 | 7 8 11 | syl2anc | |- ( ph -> G : V --> K ) |
13 | 2 | lmodring | |- ( W e. LMod -> D e. Ring ) |
14 | 7 13 | syl | |- ( ph -> D e. Ring ) |
15 | 4 6 | ring0cl | |- ( D e. Ring -> .0. e. K ) |
16 | 14 15 | syl | |- ( ph -> .0. e. K ) |
17 | 4 5 6 | ringrz | |- ( ( D e. Ring /\ k e. K ) -> ( k .x. .0. ) = .0. ) |
18 | 14 17 | sylan | |- ( ( ph /\ k e. K ) -> ( k .x. .0. ) = .0. ) |
19 | 10 12 16 16 18 | caofid1 | |- ( ph -> ( G oF .x. ( V X. { .0. } ) ) = ( V X. { .0. } ) ) |