| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfl0sc.v |
|- V = ( Base ` W ) |
| 2 |
|
lfl0sc.d |
|- D = ( Scalar ` W ) |
| 3 |
|
lfl0sc.f |
|- F = ( LFnl ` W ) |
| 4 |
|
lfl0sc.k |
|- K = ( Base ` D ) |
| 5 |
|
lfl0sc.t |
|- .x. = ( .r ` D ) |
| 6 |
|
lfl0sc.o |
|- .0. = ( 0g ` D ) |
| 7 |
|
lfl0sc.w |
|- ( ph -> W e. LMod ) |
| 8 |
|
lfl0sc.g |
|- ( ph -> G e. F ) |
| 9 |
1
|
fvexi |
|- V e. _V |
| 10 |
9
|
a1i |
|- ( ph -> V e. _V ) |
| 11 |
2 4 1 3
|
lflf |
|- ( ( W e. LMod /\ G e. F ) -> G : V --> K ) |
| 12 |
7 8 11
|
syl2anc |
|- ( ph -> G : V --> K ) |
| 13 |
2
|
lmodring |
|- ( W e. LMod -> D e. Ring ) |
| 14 |
7 13
|
syl |
|- ( ph -> D e. Ring ) |
| 15 |
4 6
|
ring0cl |
|- ( D e. Ring -> .0. e. K ) |
| 16 |
14 15
|
syl |
|- ( ph -> .0. e. K ) |
| 17 |
4 5 6
|
ringrz |
|- ( ( D e. Ring /\ k e. K ) -> ( k .x. .0. ) = .0. ) |
| 18 |
14 17
|
sylan |
|- ( ( ph /\ k e. K ) -> ( k .x. .0. ) = .0. ) |
| 19 |
10 12 16 16 18
|
caofid1 |
|- ( ph -> ( G oF .x. ( V X. { .0. } ) ) = ( V X. { .0. } ) ) |