Metamath Proof Explorer


Theorem lfl0sc

Description: The (right vector space) scalar product of a functional with zero is the zero functional. Note that the first occurrence of ( V X. { .0. } ) represents the zero scalar, and the second is the zero functional. (Contributed by NM, 7-Oct-2014)

Ref Expression
Hypotheses lfl0sc.v V=BaseW
lfl0sc.d D=ScalarW
lfl0sc.f F=LFnlW
lfl0sc.k K=BaseD
lfl0sc.t ·˙=D
lfl0sc.o 0˙=0D
lfl0sc.w φWLMod
lfl0sc.g φGF
Assertion lfl0sc φG·˙fV×0˙=V×0˙

Proof

Step Hyp Ref Expression
1 lfl0sc.v V=BaseW
2 lfl0sc.d D=ScalarW
3 lfl0sc.f F=LFnlW
4 lfl0sc.k K=BaseD
5 lfl0sc.t ·˙=D
6 lfl0sc.o 0˙=0D
7 lfl0sc.w φWLMod
8 lfl0sc.g φGF
9 1 fvexi VV
10 9 a1i φVV
11 2 4 1 3 lflf WLModGFG:VK
12 7 8 11 syl2anc φG:VK
13 2 lmodring WLModDRing
14 7 13 syl φDRing
15 4 6 ring0cl DRing0˙K
16 14 15 syl φ0˙K
17 4 5 6 ringrz DRingkKk·˙0˙=0˙
18 14 17 sylan φkKk·˙0˙=0˙
19 10 12 16 16 18 caofid1 φG·˙fV×0˙=V×0˙