Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Functionals and kernels of a left vector space (or module)
lfl0sc
Metamath Proof Explorer
Description: The (right vector space) scalar product of a functional with zero is the
zero functional. Note that the first occurrence of ( V X. { .0. } )
represents the zero scalar, and the second is the zero functional.
(Contributed by NM , 7-Oct-2014)
Ref
Expression
Hypotheses
lfl0sc.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
lfl0sc.d
⊢ 𝐷 = ( Scalar ‘ 𝑊 )
lfl0sc.f
⊢ 𝐹 = ( LFnl ‘ 𝑊 )
lfl0sc.k
⊢ 𝐾 = ( Base ‘ 𝐷 )
lfl0sc.t
⊢ · = ( .r ‘ 𝐷 )
lfl0sc.o
⊢ 0 = ( 0g ‘ 𝐷 )
lfl0sc.w
⊢ ( 𝜑 → 𝑊 ∈ LMod )
lfl0sc.g
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 )
Assertion
lfl0sc
⊢ ( 𝜑 → ( 𝐺 ∘f · ( 𝑉 × { 0 } ) ) = ( 𝑉 × { 0 } ) )
Proof
Step
Hyp
Ref
Expression
1
lfl0sc.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
2
lfl0sc.d
⊢ 𝐷 = ( Scalar ‘ 𝑊 )
3
lfl0sc.f
⊢ 𝐹 = ( LFnl ‘ 𝑊 )
4
lfl0sc.k
⊢ 𝐾 = ( Base ‘ 𝐷 )
5
lfl0sc.t
⊢ · = ( .r ‘ 𝐷 )
6
lfl0sc.o
⊢ 0 = ( 0g ‘ 𝐷 )
7
lfl0sc.w
⊢ ( 𝜑 → 𝑊 ∈ LMod )
8
lfl0sc.g
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 )
9
1
fvexi
⊢ 𝑉 ∈ V
10
9
a1i
⊢ ( 𝜑 → 𝑉 ∈ V )
11
2 4 1 3
lflf
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → 𝐺 : 𝑉 ⟶ 𝐾 )
12
7 8 11
syl2anc
⊢ ( 𝜑 → 𝐺 : 𝑉 ⟶ 𝐾 )
13
2
lmodring
⊢ ( 𝑊 ∈ LMod → 𝐷 ∈ Ring )
14
7 13
syl
⊢ ( 𝜑 → 𝐷 ∈ Ring )
15
4 6
ring0cl
⊢ ( 𝐷 ∈ Ring → 0 ∈ 𝐾 )
16
14 15
syl
⊢ ( 𝜑 → 0 ∈ 𝐾 )
17
4 5 6
ringrz
⊢ ( ( 𝐷 ∈ Ring ∧ 𝑘 ∈ 𝐾 ) → ( 𝑘 · 0 ) = 0 )
18
14 17
sylan
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑘 · 0 ) = 0 )
19
10 12 16 16 18
caofid1
⊢ ( 𝜑 → ( 𝐺 ∘f · ( 𝑉 × { 0 } ) ) = ( 𝑉 × { 0 } ) )