| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lflsc0.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lflsc0.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lflsc0.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
| 4 |
|
lflsc0.t |
⊢ · = ( .r ‘ 𝐷 ) |
| 5 |
|
lflsc0.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
| 6 |
|
lflsc0.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 7 |
|
lflsc0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
| 8 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 10 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐷 ∈ Ring ) |
| 11 |
6 10
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ Ring ) |
| 12 |
3 5
|
ring0cl |
⊢ ( 𝐷 ∈ Ring → 0 ∈ 𝐾 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
| 14 |
9 13 7
|
ofc12 |
⊢ ( 𝜑 → ( ( 𝑉 × { 0 } ) ∘f · ( 𝑉 × { 𝑋 } ) ) = ( 𝑉 × { ( 0 · 𝑋 ) } ) ) |
| 15 |
3 4 5
|
ringlz |
⊢ ( ( 𝐷 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 0 · 𝑋 ) = 0 ) |
| 16 |
11 7 15
|
syl2anc |
⊢ ( 𝜑 → ( 0 · 𝑋 ) = 0 ) |
| 17 |
16
|
sneqd |
⊢ ( 𝜑 → { ( 0 · 𝑋 ) } = { 0 } ) |
| 18 |
17
|
xpeq2d |
⊢ ( 𝜑 → ( 𝑉 × { ( 0 · 𝑋 ) } ) = ( 𝑉 × { 0 } ) ) |
| 19 |
14 18
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑉 × { 0 } ) ∘f · ( 𝑉 × { 𝑋 } ) ) = ( 𝑉 × { 0 } ) ) |