| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lflsc0.v |
|- V = ( Base ` W ) |
| 2 |
|
lflsc0.d |
|- D = ( Scalar ` W ) |
| 3 |
|
lflsc0.k |
|- K = ( Base ` D ) |
| 4 |
|
lflsc0.t |
|- .x. = ( .r ` D ) |
| 5 |
|
lflsc0.o |
|- .0. = ( 0g ` D ) |
| 6 |
|
lflsc0.w |
|- ( ph -> W e. LMod ) |
| 7 |
|
lflsc0.x |
|- ( ph -> X e. K ) |
| 8 |
1
|
fvexi |
|- V e. _V |
| 9 |
8
|
a1i |
|- ( ph -> V e. _V ) |
| 10 |
2
|
lmodring |
|- ( W e. LMod -> D e. Ring ) |
| 11 |
6 10
|
syl |
|- ( ph -> D e. Ring ) |
| 12 |
3 5
|
ring0cl |
|- ( D e. Ring -> .0. e. K ) |
| 13 |
11 12
|
syl |
|- ( ph -> .0. e. K ) |
| 14 |
9 13 7
|
ofc12 |
|- ( ph -> ( ( V X. { .0. } ) oF .x. ( V X. { X } ) ) = ( V X. { ( .0. .x. X ) } ) ) |
| 15 |
3 4 5
|
ringlz |
|- ( ( D e. Ring /\ X e. K ) -> ( .0. .x. X ) = .0. ) |
| 16 |
11 7 15
|
syl2anc |
|- ( ph -> ( .0. .x. X ) = .0. ) |
| 17 |
16
|
sneqd |
|- ( ph -> { ( .0. .x. X ) } = { .0. } ) |
| 18 |
17
|
xpeq2d |
|- ( ph -> ( V X. { ( .0. .x. X ) } ) = ( V X. { .0. } ) ) |
| 19 |
14 18
|
eqtrd |
|- ( ph -> ( ( V X. { .0. } ) oF .x. ( V X. { X } ) ) = ( V X. { .0. } ) ) |