Metamath Proof Explorer


Theorem lflsc0N

Description: The scalar product with the zero functional is the zero functional. (Contributed by NM, 7-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lflsc0.v V = Base W
lflsc0.d D = Scalar W
lflsc0.k K = Base D
lflsc0.t · ˙ = D
lflsc0.o 0 ˙ = 0 D
lflsc0.w φ W LMod
lflsc0.x φ X K
Assertion lflsc0N φ V × 0 ˙ · ˙ f V × X = V × 0 ˙

Proof

Step Hyp Ref Expression
1 lflsc0.v V = Base W
2 lflsc0.d D = Scalar W
3 lflsc0.k K = Base D
4 lflsc0.t · ˙ = D
5 lflsc0.o 0 ˙ = 0 D
6 lflsc0.w φ W LMod
7 lflsc0.x φ X K
8 1 fvexi V V
9 8 a1i φ V V
10 2 lmodring W LMod D Ring
11 6 10 syl φ D Ring
12 3 5 ring0cl D Ring 0 ˙ K
13 11 12 syl φ 0 ˙ K
14 9 13 7 ofc12 φ V × 0 ˙ · ˙ f V × X = V × 0 ˙ · ˙ X
15 3 4 5 ringlz D Ring X K 0 ˙ · ˙ X = 0 ˙
16 11 7 15 syl2anc φ 0 ˙ · ˙ X = 0 ˙
17 16 sneqd φ 0 ˙ · ˙ X = 0 ˙
18 17 xpeq2d φ V × 0 ˙ · ˙ X = V × 0 ˙
19 14 18 eqtrd φ V × 0 ˙ · ˙ f V × X = V × 0 ˙