Step |
Hyp |
Ref |
Expression |
1 |
|
lkrsc.v |
|- V = ( Base ` W ) |
2 |
|
lkrsc.d |
|- D = ( Scalar ` W ) |
3 |
|
lkrsc.k |
|- K = ( Base ` D ) |
4 |
|
lkrsc.t |
|- .x. = ( .r ` D ) |
5 |
|
lkrsc.f |
|- F = ( LFnl ` W ) |
6 |
|
lkrsc.l |
|- L = ( LKer ` W ) |
7 |
|
lkrsc.w |
|- ( ph -> W e. LVec ) |
8 |
|
lkrsc.g |
|- ( ph -> G e. F ) |
9 |
|
lkrsc.r |
|- ( ph -> R e. K ) |
10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
11 |
7 10
|
syl |
|- ( ph -> W e. LMod ) |
12 |
1 5 6 11 8
|
lkrssv |
|- ( ph -> ( L ` G ) C_ V ) |
13 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
14 |
1 2 5 3 4 13 11 8
|
lfl0sc |
|- ( ph -> ( G oF .x. ( V X. { ( 0g ` D ) } ) ) = ( V X. { ( 0g ` D ) } ) ) |
15 |
14
|
fveq2d |
|- ( ph -> ( L ` ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) = ( L ` ( V X. { ( 0g ` D ) } ) ) ) |
16 |
|
eqid |
|- ( V X. { ( 0g ` D ) } ) = ( V X. { ( 0g ` D ) } ) |
17 |
2 13 1 5
|
lfl0f |
|- ( W e. LMod -> ( V X. { ( 0g ` D ) } ) e. F ) |
18 |
2 13 1 5 6
|
lkr0f |
|- ( ( W e. LMod /\ ( V X. { ( 0g ` D ) } ) e. F ) -> ( ( L ` ( V X. { ( 0g ` D ) } ) ) = V <-> ( V X. { ( 0g ` D ) } ) = ( V X. { ( 0g ` D ) } ) ) ) |
19 |
11 17 18
|
syl2anc2 |
|- ( ph -> ( ( L ` ( V X. { ( 0g ` D ) } ) ) = V <-> ( V X. { ( 0g ` D ) } ) = ( V X. { ( 0g ` D ) } ) ) ) |
20 |
16 19
|
mpbiri |
|- ( ph -> ( L ` ( V X. { ( 0g ` D ) } ) ) = V ) |
21 |
15 20
|
eqtr2d |
|- ( ph -> V = ( L ` ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) ) |
22 |
12 21
|
sseqtrd |
|- ( ph -> ( L ` G ) C_ ( L ` ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) ) |
23 |
22
|
adantr |
|- ( ( ph /\ R = ( 0g ` D ) ) -> ( L ` G ) C_ ( L ` ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) ) |
24 |
|
sneq |
|- ( R = ( 0g ` D ) -> { R } = { ( 0g ` D ) } ) |
25 |
24
|
xpeq2d |
|- ( R = ( 0g ` D ) -> ( V X. { R } ) = ( V X. { ( 0g ` D ) } ) ) |
26 |
25
|
oveq2d |
|- ( R = ( 0g ` D ) -> ( G oF .x. ( V X. { R } ) ) = ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) |
27 |
26
|
fveq2d |
|- ( R = ( 0g ` D ) -> ( L ` ( G oF .x. ( V X. { R } ) ) ) = ( L ` ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ R = ( 0g ` D ) ) -> ( L ` ( G oF .x. ( V X. { R } ) ) ) = ( L ` ( G oF .x. ( V X. { ( 0g ` D ) } ) ) ) ) |
29 |
23 28
|
sseqtrrd |
|- ( ( ph /\ R = ( 0g ` D ) ) -> ( L ` G ) C_ ( L ` ( G oF .x. ( V X. { R } ) ) ) ) |
30 |
7
|
adantr |
|- ( ( ph /\ R =/= ( 0g ` D ) ) -> W e. LVec ) |
31 |
8
|
adantr |
|- ( ( ph /\ R =/= ( 0g ` D ) ) -> G e. F ) |
32 |
9
|
adantr |
|- ( ( ph /\ R =/= ( 0g ` D ) ) -> R e. K ) |
33 |
|
simpr |
|- ( ( ph /\ R =/= ( 0g ` D ) ) -> R =/= ( 0g ` D ) ) |
34 |
1 2 3 4 5 6 30 31 32 13 33
|
lkrsc |
|- ( ( ph /\ R =/= ( 0g ` D ) ) -> ( L ` ( G oF .x. ( V X. { R } ) ) ) = ( L ` G ) ) |
35 |
|
eqimss2 |
|- ( ( L ` ( G oF .x. ( V X. { R } ) ) ) = ( L ` G ) -> ( L ` G ) C_ ( L ` ( G oF .x. ( V X. { R } ) ) ) ) |
36 |
34 35
|
syl |
|- ( ( ph /\ R =/= ( 0g ` D ) ) -> ( L ` G ) C_ ( L ` ( G oF .x. ( V X. { R } ) ) ) ) |
37 |
29 36
|
pm2.61dane |
|- ( ph -> ( L ` G ) C_ ( L ` ( G oF .x. ( V X. { R } ) ) ) ) |