| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkrsc.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lkrsc.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lkrsc.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
| 4 |
|
lkrsc.t |
⊢ · = ( .r ‘ 𝐷 ) |
| 5 |
|
lkrsc.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 6 |
|
lkrsc.l |
⊢ 𝐿 = ( LKer ‘ 𝑊 ) |
| 7 |
|
lkrsc.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 8 |
|
lkrsc.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 9 |
|
lkrsc.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) |
| 10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 11 |
7 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
1 5 6 11 8
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
| 14 |
1 2 5 3 4 13 11 8
|
lfl0sc |
⊢ ( 𝜑 → ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) = ( 𝐿 ‘ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 16 |
|
eqid |
⊢ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) |
| 17 |
2 13 1 5
|
lfl0f |
⊢ ( 𝑊 ∈ LMod → ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∈ 𝐹 ) |
| 18 |
2 13 1 5 6
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∈ 𝐹 ) → ( ( 𝐿 ‘ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) = 𝑉 ↔ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 19 |
11 17 18
|
syl2anc2 |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) = 𝑉 ↔ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 20 |
16 19
|
mpbiri |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) = 𝑉 ) |
| 21 |
15 20
|
eqtr2d |
⊢ ( 𝜑 → 𝑉 = ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ) |
| 22 |
12 21
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 = ( 0g ‘ 𝐷 ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ) |
| 24 |
|
sneq |
⊢ ( 𝑅 = ( 0g ‘ 𝐷 ) → { 𝑅 } = { ( 0g ‘ 𝐷 ) } ) |
| 25 |
24
|
xpeq2d |
⊢ ( 𝑅 = ( 0g ‘ 𝐷 ) → ( 𝑉 × { 𝑅 } ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝑅 = ( 0g ‘ 𝐷 ) → ( 𝐺 ∘f · ( 𝑉 × { 𝑅 } ) ) = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝑅 = ( 0g ‘ 𝐷 ) → ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑅 } ) ) ) = ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑅 = ( 0g ‘ 𝐷 ) ) → ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑅 } ) ) ) = ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ) |
| 29 |
23 28
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑅 = ( 0g ‘ 𝐷 ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑅 } ) ) ) ) |
| 30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ≠ ( 0g ‘ 𝐷 ) ) → 𝑊 ∈ LVec ) |
| 31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ≠ ( 0g ‘ 𝐷 ) ) → 𝐺 ∈ 𝐹 ) |
| 32 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ≠ ( 0g ‘ 𝐷 ) ) → 𝑅 ∈ 𝐾 ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑅 ≠ ( 0g ‘ 𝐷 ) ) → 𝑅 ≠ ( 0g ‘ 𝐷 ) ) |
| 34 |
1 2 3 4 5 6 30 31 32 13 33
|
lkrsc |
⊢ ( ( 𝜑 ∧ 𝑅 ≠ ( 0g ‘ 𝐷 ) ) → ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑅 } ) ) ) = ( 𝐿 ‘ 𝐺 ) ) |
| 35 |
|
eqimss2 |
⊢ ( ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑅 } ) ) ) = ( 𝐿 ‘ 𝐺 ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑅 } ) ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑅 ≠ ( 0g ‘ 𝐷 ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑅 } ) ) ) ) |
| 37 |
29 36
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑅 } ) ) ) ) |