Step |
Hyp |
Ref |
Expression |
1 |
|
eqlkr.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
2 |
|
eqlkr.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
3 |
|
eqlkr.t |
⊢ · = ( .r ‘ 𝐷 ) |
4 |
|
eqlkr.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
5 |
|
eqlkr.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
6 |
|
eqlkr.l |
⊢ 𝐿 = ( LKer ‘ 𝑊 ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑊 ∈ LVec ) |
8 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
9 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐷 ∈ Ring ) |
10 |
8 9
|
syl |
⊢ ( 𝑊 ∈ LVec → 𝐷 ∈ Ring ) |
11 |
7 10
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝐷 ∈ Ring ) |
12 |
|
eqid |
⊢ ( 1r ‘ 𝐷 ) = ( 1r ‘ 𝐷 ) |
13 |
2 12
|
ringidcl |
⊢ ( 𝐷 ∈ Ring → ( 1r ‘ 𝐷 ) ∈ 𝐾 ) |
14 |
11 13
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 1r ‘ 𝐷 ) ∈ 𝐾 ) |
15 |
|
simp11 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ LVec ) |
16 |
15 10
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → 𝐷 ∈ Ring ) |
17 |
|
simp12l |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → 𝐺 ∈ 𝐹 ) |
18 |
|
simp3 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
19 |
1 2 4 5
|
lflcl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ) |
20 |
15 17 18 19
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ) |
21 |
2 3 12
|
ringridm |
⊢ ( ( 𝐷 ∈ Ring ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ) → ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
22 |
16 20 21
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
23 |
|
simp2 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
24 |
|
simp13 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) |
25 |
15 8
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
27 |
1 26 4 5 6
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
28 |
25 17 27
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
29 |
23 28
|
mpbird |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
30 |
24 29
|
eqtr3d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 𝐻 ) = 𝑉 ) |
31 |
|
simp12r |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → 𝐻 ∈ 𝐹 ) |
32 |
1 26 4 5 6
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐻 ) = 𝑉 ↔ 𝐻 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
33 |
25 31 32
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝐻 ) = 𝑉 ↔ 𝐻 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
34 |
30 33
|
mpbid |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → 𝐻 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
35 |
23 34
|
eqtr4d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → 𝐺 = 𝐻 ) |
36 |
35
|
fveq1d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
37 |
22 36
|
eqtr2d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) ) |
38 |
37
|
3expia |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝑥 ∈ 𝑉 → ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) ) ) |
39 |
38
|
ralrimiv |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) ) |
40 |
|
oveq2 |
⊢ ( 𝑟 = ( 1r ‘ 𝐷 ) → ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) ) |
41 |
40
|
eqeq2d |
⊢ ( 𝑟 = ( 1r ‘ 𝐷 ) → ( ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ↔ ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) ) ) |
42 |
41
|
ralbidv |
⊢ ( 𝑟 = ( 1r ‘ 𝐷 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) ) ) |
43 |
42
|
rspcev |
⊢ ( ( ( 1r ‘ 𝐷 ) ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) ) → ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) |
44 |
14 39 43
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) |
45 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑊 ∈ LVec ) |
46 |
|
simpl2l |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝐺 ∈ 𝐹 ) |
47 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
48 |
1 26 12 4 5
|
lfl1 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ∃ 𝑧 ∈ 𝑉 ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) |
49 |
45 46 47 48
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ∃ 𝑧 ∈ 𝑉 ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) |
50 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ) → 𝑊 ∈ LVec ) |
51 |
|
simpl2r |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ) → 𝐻 ∈ 𝐹 ) |
52 |
|
simpr2 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ) → 𝑧 ∈ 𝑉 ) |
53 |
1 2 4 5
|
lflcl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹 ∧ 𝑧 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑧 ) ∈ 𝐾 ) |
54 |
50 51 52 53
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ) → ( 𝐻 ‘ 𝑧 ) ∈ 𝐾 ) |
55 |
|
simp11 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ LVec ) |
56 |
55 8
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
57 |
|
simp12r |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝐻 ∈ 𝐹 ) |
58 |
|
simp12l |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝐺 ∈ 𝐹 ) |
59 |
|
simp3 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
60 |
1 2 4 5
|
lflcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ) |
61 |
56 58 59 60
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ) |
62 |
|
simp22 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑧 ∈ 𝑉 ) |
63 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
64 |
1 2 3 4 63 5
|
lflmul |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐻 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) |
65 |
56 57 61 62 64
|
syl112anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) |
66 |
65
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐻 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( 𝐻 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( ( 𝐻 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) ) |
67 |
4 1 63 2
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
68 |
56 61 62 67
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
69 |
|
eqid |
⊢ ( -g ‘ 𝐷 ) = ( -g ‘ 𝐷 ) |
70 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
71 |
1 69 4 70 5
|
lflsub |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ ( 𝑥 ∈ 𝑉 ∧ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) ) → ( 𝐻 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( ( 𝐻 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( 𝐻 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
72 |
56 57 59 68 71
|
syl112anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( ( 𝐻 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( 𝐻 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
73 |
4 70
|
lmodvsubcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑉 ∧ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) → ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ 𝑉 ) |
74 |
56 59 68 73
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ 𝑉 ) |
75 |
1 69 4 70 5
|
lflsub |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑥 ∈ 𝑉 ∧ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) ) → ( 𝐺 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( ( 𝐺 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
76 |
56 58 59 68 75
|
syl112anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( ( 𝐺 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
77 |
55 58 59 19
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ) |
78 |
1 2 3 4 63 5
|
lflmul |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐺 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
79 |
56 58 77 62 78
|
syl112anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
80 |
|
simp23 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) |
81 |
80
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑧 ) ) = ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) ) |
82 |
55 10
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝐷 ∈ Ring ) |
83 |
82 77 21
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑥 ) · ( 1r ‘ 𝐷 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
84 |
79 81 83
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
85 |
84
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( ( 𝐺 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑥 ) ) ) |
86 |
1
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → 𝐷 ∈ Grp ) |
87 |
8 86
|
syl |
⊢ ( 𝑊 ∈ LVec → 𝐷 ∈ Grp ) |
88 |
55 87
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝐷 ∈ Grp ) |
89 |
2 26 69
|
grpsubid |
⊢ ( ( 𝐷 ∈ Grp ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ) → ( ( 𝐺 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑥 ) ) = ( 0g ‘ 𝐷 ) ) |
90 |
88 77 89
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑥 ) ) = ( 0g ‘ 𝐷 ) ) |
91 |
76 85 90
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ) |
92 |
4 1 26 5 6
|
ellkr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝐿 ‘ 𝐺 ) ↔ ( ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ 𝑉 ∧ ( 𝐺 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ) ) ) |
93 |
55 58 92
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝐿 ‘ 𝐺 ) ↔ ( ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ 𝑉 ∧ ( 𝐺 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ) ) ) |
94 |
74 91 93
|
mpbir2and |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝐿 ‘ 𝐺 ) ) |
95 |
|
simp13 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) |
96 |
94 95
|
eleqtrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝐿 ‘ 𝐻 ) ) |
97 |
4 1 26 5 6
|
ellkr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹 ) → ( ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝐿 ‘ 𝐻 ) ↔ ( ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ 𝑉 ∧ ( 𝐻 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ) ) ) |
98 |
55 57 97
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ ( 𝐿 ‘ 𝐻 ) ↔ ( ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ 𝑉 ∧ ( 𝐻 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ) ) ) |
99 |
96 98
|
mpbid |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ∈ 𝑉 ∧ ( 𝐻 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ) ) |
100 |
99
|
simprd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ‘ ( 𝑥 ( -g ‘ 𝑊 ) ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ) |
101 |
72 100
|
eqtr3d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐻 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( 𝐻 ‘ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ) |
102 |
66 101
|
eqtr3d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐻 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ) |
103 |
1 2 4 5
|
lflcl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐾 ) |
104 |
55 57 59 103
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐾 ) |
105 |
54
|
3adant3 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑧 ) ∈ 𝐾 ) |
106 |
1 2 3
|
lmodmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐾 ∧ ( 𝐻 ‘ 𝑧 ) ∈ 𝐾 ) → ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ∈ 𝐾 ) |
107 |
56 77 105 106
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ∈ 𝐾 ) |
108 |
2 26 69
|
grpsubeq0 |
⊢ ( ( 𝐷 ∈ Grp ∧ ( 𝐻 ‘ 𝑥 ) ∈ 𝐾 ∧ ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ∈ 𝐾 ) → ( ( ( 𝐻 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ↔ ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) ) |
109 |
88 104 107 108
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ( 𝐻 ‘ 𝑥 ) ( -g ‘ 𝐷 ) ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) = ( 0g ‘ 𝐷 ) ↔ ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) ) |
110 |
102 109
|
mpbid |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) |
111 |
110
|
3expia |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ) → ( 𝑥 ∈ 𝑉 → ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) ) |
112 |
111
|
ralrimiv |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ) → ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) |
113 |
|
oveq2 |
⊢ ( 𝑟 = ( 𝐻 ‘ 𝑧 ) → ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) |
114 |
113
|
eqeq2d |
⊢ ( 𝑟 = ( 𝐻 ‘ 𝑧 ) → ( ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ↔ ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) ) |
115 |
114
|
ralbidv |
⊢ ( 𝑟 = ( 𝐻 ‘ 𝑧 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) ) |
116 |
115
|
rspcev |
⊢ ( ( ( 𝐻 ‘ 𝑧 ) ∈ 𝐾 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑧 ) ) ) → ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) |
117 |
54 112 116
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝑧 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) ) ) → ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) |
118 |
117
|
3exp2 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) → ( 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) → ( 𝑧 ∈ 𝑉 → ( ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) → ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) ) ) ) |
119 |
118
|
imp |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝑧 ∈ 𝑉 → ( ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) → ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) ) ) |
120 |
119
|
rexlimdv |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( ∃ 𝑧 ∈ 𝑉 ( 𝐺 ‘ 𝑧 ) = ( 1r ‘ 𝐷 ) → ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) ) |
121 |
49 120
|
mpd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) |
122 |
44 121
|
pm2.61dane |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) → ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) |