Step |
Hyp |
Ref |
Expression |
1 |
|
eqlkr.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
2 |
|
eqlkr.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
3 |
|
eqlkr.t |
⊢ · = ( .r ‘ 𝐷 ) |
4 |
|
eqlkr.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
5 |
|
eqlkr.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
6 |
|
eqlkr.l |
⊢ 𝐿 = ( LKer ‘ 𝑊 ) |
7 |
1 2 3 4 5 6
|
eqlkr |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) → ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) |
8 |
4
|
fvexi |
⊢ 𝑉 ∈ V |
9 |
8
|
a1i |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) → 𝑉 ∈ V ) |
10 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) → 𝑊 ∈ LVec ) |
11 |
|
simpl2l |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) → 𝐺 ∈ 𝐹 ) |
12 |
1 2 4 5
|
lflf |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ) → 𝐺 : 𝑉 ⟶ 𝐾 ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) → 𝐺 : 𝑉 ⟶ 𝐾 ) |
14 |
13
|
ffnd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) → 𝐺 Fn 𝑉 ) |
15 |
|
vex |
⊢ 𝑟 ∈ V |
16 |
|
fnconstg |
⊢ ( 𝑟 ∈ V → ( 𝑉 × { 𝑟 } ) Fn 𝑉 ) |
17 |
15 16
|
mp1i |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) → ( 𝑉 × { 𝑟 } ) Fn 𝑉 ) |
18 |
|
simpl2r |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) → 𝐻 ∈ 𝐹 ) |
19 |
1 2 4 5
|
lflf |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹 ) → 𝐻 : 𝑉 ⟶ 𝐾 ) |
20 |
10 18 19
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) → 𝐻 : 𝑉 ⟶ 𝐾 ) |
21 |
20
|
ffnd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) → 𝐻 Fn 𝑉 ) |
22 |
|
eqidd |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
23 |
15
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝑉 → ( ( 𝑉 × { 𝑟 } ) ‘ 𝑥 ) = 𝑟 ) |
24 |
23
|
adantl |
⊢ ( ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑉 × { 𝑟 } ) ‘ 𝑥 ) = 𝑟 ) |
25 |
9 14 17 21 22 24
|
offveqb |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ∧ 𝑟 ∈ 𝐾 ) → ( 𝐻 = ( 𝐺 ∘f · ( 𝑉 × { 𝑟 } ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) ) |
26 |
25
|
rexbidva |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) → ( ∃ 𝑟 ∈ 𝐾 𝐻 = ( 𝐺 ∘f · ( 𝑉 × { 𝑟 } ) ) ↔ ∃ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · 𝑟 ) ) ) |
27 |
7 26
|
mpbird |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) → ∃ 𝑟 ∈ 𝐾 𝐻 = ( 𝐺 ∘f · ( 𝑉 × { 𝑟 } ) ) ) |