Metamath Proof Explorer


Theorem offveqb

Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014) (Proof shortened by Mario Carneiro, 5-Dec-2016)

Ref Expression
Hypotheses offveq.1 ( 𝜑𝐴𝑉 )
offveq.2 ( 𝜑𝐹 Fn 𝐴 )
offveq.3 ( 𝜑𝐺 Fn 𝐴 )
offveq.4 ( 𝜑𝐻 Fn 𝐴 )
offveq.5 ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )
offveq.6 ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) = 𝐶 )
Assertion offveqb ( 𝜑 → ( 𝐻 = ( 𝐹f 𝑅 𝐺 ) ↔ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐵 𝑅 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 offveq.1 ( 𝜑𝐴𝑉 )
2 offveq.2 ( 𝜑𝐹 Fn 𝐴 )
3 offveq.3 ( 𝜑𝐺 Fn 𝐴 )
4 offveq.4 ( 𝜑𝐻 Fn 𝐴 )
5 offveq.5 ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )
6 offveq.6 ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) = 𝐶 )
7 dffn5 ( 𝐻 Fn 𝐴𝐻 = ( 𝑥𝐴 ↦ ( 𝐻𝑥 ) ) )
8 4 7 sylib ( 𝜑𝐻 = ( 𝑥𝐴 ↦ ( 𝐻𝑥 ) ) )
9 inidm ( 𝐴𝐴 ) = 𝐴
10 2 3 1 1 9 5 6 offval ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) = ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) )
11 8 10 eqeq12d ( 𝜑 → ( 𝐻 = ( 𝐹f 𝑅 𝐺 ) ↔ ( 𝑥𝐴 ↦ ( 𝐻𝑥 ) ) = ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) )
12 fvexd ( 𝜑 → ( 𝐻𝑥 ) ∈ V )
13 12 ralrimivw ( 𝜑 → ∀ 𝑥𝐴 ( 𝐻𝑥 ) ∈ V )
14 mpteqb ( ∀ 𝑥𝐴 ( 𝐻𝑥 ) ∈ V → ( ( 𝑥𝐴 ↦ ( 𝐻𝑥 ) ) = ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ↔ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐵 𝑅 𝐶 ) ) )
15 13 14 syl ( 𝜑 → ( ( 𝑥𝐴 ↦ ( 𝐻𝑥 ) ) = ( 𝑥𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ↔ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐵 𝑅 𝐶 ) ) )
16 11 15 bitrd ( 𝜑 → ( 𝐻 = ( 𝐹f 𝑅 𝐺 ) ↔ ∀ 𝑥𝐴 ( 𝐻𝑥 ) = ( 𝐵 𝑅 𝐶 ) ) )