Step |
Hyp |
Ref |
Expression |
1 |
|
offveq.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
offveq.2 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
3 |
|
offveq.3 |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
4 |
|
offveq.4 |
⊢ ( 𝜑 → 𝐻 Fn 𝐴 ) |
5 |
|
offveq.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
6 |
|
offveq.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = 𝐶 ) |
7 |
|
dffn5 |
⊢ ( 𝐻 Fn 𝐴 ↔ 𝐻 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
8 |
4 7
|
sylib |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
9 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
10 |
2 3 1 1 9 5 6
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
11 |
8 10
|
eqeq12d |
⊢ ( 𝜑 → ( 𝐻 = ( 𝐹 ∘f 𝑅 𝐺 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) ) |
12 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑥 ) ∈ V ) |
13 |
12
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) ∈ V ) |
14 |
|
mpteqb |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐵 𝑅 𝐶 ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐵 𝑅 𝐶 ) ) ) |
16 |
11 15
|
bitrd |
⊢ ( 𝜑 → ( 𝐻 = ( 𝐹 ∘f 𝑅 𝐺 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = ( 𝐵 𝑅 𝐶 ) ) ) |