Step |
Hyp |
Ref |
Expression |
1 |
|
offveq.1 |
|- ( ph -> A e. V ) |
2 |
|
offveq.2 |
|- ( ph -> F Fn A ) |
3 |
|
offveq.3 |
|- ( ph -> G Fn A ) |
4 |
|
offveq.4 |
|- ( ph -> H Fn A ) |
5 |
|
offveq.5 |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
6 |
|
offveq.6 |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = C ) |
7 |
|
dffn5 |
|- ( H Fn A <-> H = ( x e. A |-> ( H ` x ) ) ) |
8 |
4 7
|
sylib |
|- ( ph -> H = ( x e. A |-> ( H ` x ) ) ) |
9 |
|
inidm |
|- ( A i^i A ) = A |
10 |
2 3 1 1 9 5 6
|
offval |
|- ( ph -> ( F oF R G ) = ( x e. A |-> ( B R C ) ) ) |
11 |
8 10
|
eqeq12d |
|- ( ph -> ( H = ( F oF R G ) <-> ( x e. A |-> ( H ` x ) ) = ( x e. A |-> ( B R C ) ) ) ) |
12 |
|
fvexd |
|- ( ph -> ( H ` x ) e. _V ) |
13 |
12
|
ralrimivw |
|- ( ph -> A. x e. A ( H ` x ) e. _V ) |
14 |
|
mpteqb |
|- ( A. x e. A ( H ` x ) e. _V -> ( ( x e. A |-> ( H ` x ) ) = ( x e. A |-> ( B R C ) ) <-> A. x e. A ( H ` x ) = ( B R C ) ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( ( x e. A |-> ( H ` x ) ) = ( x e. A |-> ( B R C ) ) <-> A. x e. A ( H ` x ) = ( B R C ) ) ) |
16 |
11 15
|
bitrd |
|- ( ph -> ( H = ( F oF R G ) <-> A. x e. A ( H ` x ) = ( B R C ) ) ) |