Metamath Proof Explorer


Theorem eqlkr2

Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014)

Ref Expression
Hypotheses eqlkr.d D=ScalarW
eqlkr.k K=BaseD
eqlkr.t ·˙=D
eqlkr.v V=BaseW
eqlkr.f F=LFnlW
eqlkr.l L=LKerW
Assertion eqlkr2 WLVecGFHFLG=LHrKH=G·˙fV×r

Proof

Step Hyp Ref Expression
1 eqlkr.d D=ScalarW
2 eqlkr.k K=BaseD
3 eqlkr.t ·˙=D
4 eqlkr.v V=BaseW
5 eqlkr.f F=LFnlW
6 eqlkr.l L=LKerW
7 1 2 3 4 5 6 eqlkr WLVecGFHFLG=LHrKxVHx=Gx·˙r
8 4 fvexi VV
9 8 a1i WLVecGFHFLG=LHrKVV
10 simpl1 WLVecGFHFLG=LHrKWLVec
11 simpl2l WLVecGFHFLG=LHrKGF
12 1 2 4 5 lflf WLVecGFG:VK
13 10 11 12 syl2anc WLVecGFHFLG=LHrKG:VK
14 13 ffnd WLVecGFHFLG=LHrKGFnV
15 vex rV
16 fnconstg rVV×rFnV
17 15 16 mp1i WLVecGFHFLG=LHrKV×rFnV
18 simpl2r WLVecGFHFLG=LHrKHF
19 1 2 4 5 lflf WLVecHFH:VK
20 10 18 19 syl2anc WLVecGFHFLG=LHrKH:VK
21 20 ffnd WLVecGFHFLG=LHrKHFnV
22 eqidd WLVecGFHFLG=LHrKxVGx=Gx
23 15 fvconst2 xVV×rx=r
24 23 adantl WLVecGFHFLG=LHrKxVV×rx=r
25 9 14 17 21 22 24 offveqb WLVecGFHFLG=LHrKH=G·˙fV×rxVHx=Gx·˙r
26 25 rexbidva WLVecGFHFLG=LHrKH=G·˙fV×rrKxVHx=Gx·˙r
27 7 26 mpbird WLVecGFHFLG=LHrKH=G·˙fV×r