Step |
Hyp |
Ref |
Expression |
1 |
|
eqlkr3.v |
|
2 |
|
eqlkr3.s |
|
3 |
|
eqlkr3.r |
|
4 |
|
eqlkr3.o |
|
5 |
|
eqlkr3.f |
|
6 |
|
eqlkr3.k |
|
7 |
|
eqlkr3.w |
|
8 |
|
eqlkr3.x |
|
9 |
|
eqlkr3.g |
|
10 |
|
eqlkr3.h |
|
11 |
|
eqlkr3.e |
|
12 |
|
eqlkr3.a |
|
13 |
|
eqlkr3.n |
|
14 |
2 3 1 5
|
lflf |
|
15 |
7 9 14
|
syl2anc |
|
16 |
15
|
ffnd |
|
17 |
2 3 1 5
|
lflf |
|
18 |
7 10 17
|
syl2anc |
|
19 |
18
|
ffnd |
|
20 |
|
eqid |
|
21 |
2 3 20 1 5 6
|
eqlkr |
|
22 |
7 9 10 11 21
|
syl121anc |
|
23 |
8
|
adantr |
|
24 |
|
fveq2 |
|
25 |
|
fveq2 |
|
26 |
25
|
oveq1d |
|
27 |
24 26
|
eqeq12d |
|
28 |
27
|
rspcv |
|
29 |
23 28
|
syl |
|
30 |
12
|
adantr |
|
31 |
30
|
adantr |
|
32 |
|
simpr |
|
33 |
31 32
|
eqtr2d |
|
34 |
33
|
oveq2d |
|
35 |
2
|
lvecdrng |
|
36 |
7 35
|
syl |
|
37 |
36
|
adantr |
|
38 |
2 3 1 5
|
lflcl |
|
39 |
7 9 8 38
|
syl3anc |
|
40 |
39
|
adantr |
|
41 |
13
|
adantr |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
3 4 20 42 43
|
drnginvrl |
|
45 |
37 40 41 44
|
syl3anc |
|
46 |
45
|
oveq1d |
|
47 |
|
lveclmod |
|
48 |
7 47
|
syl |
|
49 |
2
|
lmodring |
|
50 |
48 49
|
syl |
|
51 |
50
|
adantr |
|
52 |
3 4 43
|
drnginvrcl |
|
53 |
37 40 41 52
|
syl3anc |
|
54 |
|
simpr |
|
55 |
3 20
|
ringass |
|
56 |
51 53 40 54 55
|
syl13anc |
|
57 |
3 20 42
|
ringlidm |
|
58 |
51 54 57
|
syl2anc |
|
59 |
46 56 58
|
3eqtr3d |
|
60 |
59
|
adantr |
|
61 |
45
|
adantr |
|
62 |
34 60 61
|
3eqtr3d |
|
63 |
62
|
ex |
|
64 |
29 63
|
syld |
|
65 |
64
|
ancrd |
|
66 |
65
|
reximdva |
|
67 |
22 66
|
mpd |
|
68 |
3 42
|
ringidcl |
|
69 |
50 68
|
syl |
|
70 |
|
oveq2 |
|
71 |
70
|
eqeq2d |
|
72 |
71
|
ralbidv |
|
73 |
72
|
ceqsrexv |
|
74 |
69 73
|
syl |
|
75 |
67 74
|
mpbid |
|
76 |
75
|
r19.21bi |
|
77 |
48
|
adantr |
|
78 |
77 49
|
syl |
|
79 |
7
|
adantr |
|
80 |
9
|
adantr |
|
81 |
|
simpr |
|
82 |
2 3 1 5
|
lflcl |
|
83 |
79 80 81 82
|
syl3anc |
|
84 |
3 20 42
|
ringridm |
|
85 |
78 83 84
|
syl2anc |
|
86 |
76 85
|
eqtr2d |
|
87 |
16 19 86
|
eqfnfvd |
|