Metamath Proof Explorer


Theorem lkrlsp

Description: The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr ) is the whole vector space. (Contributed by NM, 19-Apr-2014)

Ref Expression
Hypotheses lkrlsp.d D=ScalarW
lkrlsp.o 0˙=0D
lkrlsp.v V=BaseW
lkrlsp.n N=LSpanW
lkrlsp.p ˙=LSSumW
lkrlsp.f F=LFnlW
lkrlsp.k K=LKerW
Assertion lkrlsp WLVecXVGFGX0˙KG˙NX=V

Proof

Step Hyp Ref Expression
1 lkrlsp.d D=ScalarW
2 lkrlsp.o 0˙=0D
3 lkrlsp.v V=BaseW
4 lkrlsp.n N=LSpanW
5 lkrlsp.p ˙=LSSumW
6 lkrlsp.f F=LFnlW
7 lkrlsp.k K=LKerW
8 lveclmod WLVecWLMod
9 8 3ad2ant1 WLVecXVGFGX0˙WLMod
10 simp2r WLVecXVGFGX0˙GF
11 eqid LSubSpW=LSubSpW
12 6 7 11 lkrlss WLModGFKGLSubSpW
13 9 10 12 syl2anc WLVecXVGFGX0˙KGLSubSpW
14 simp2l WLVecXVGFGX0˙XV
15 3 11 4 lspsncl WLModXVNXLSubSpW
16 9 14 15 syl2anc WLVecXVGFGX0˙NXLSubSpW
17 11 5 lsmcl WLModKGLSubSpWNXLSubSpWKG˙NXLSubSpW
18 9 13 16 17 syl3anc WLVecXVGFGX0˙KG˙NXLSubSpW
19 3 11 lssss KG˙NXLSubSpWKG˙NXV
20 18 19 syl WLVecXVGFGX0˙KG˙NXV
21 simpl1 WLVecXVGFGX0˙uVWLVec
22 21 8 syl WLVecXVGFGX0˙uVWLMod
23 simpr WLVecXVGFGX0˙uVuV
24 1 lmodring WLModDRing
25 22 24 syl WLVecXVGFGX0˙uVDRing
26 simpl2r WLVecXVGFGX0˙uVGF
27 eqid BaseD=BaseD
28 1 27 3 6 lflcl WLVecGFuVGuBaseD
29 21 26 23 28 syl3anc WLVecXVGFGX0˙uVGuBaseD
30 1 lvecdrng WLVecDDivRing
31 21 30 syl WLVecXVGFGX0˙uVDDivRing
32 simpl2l WLVecXVGFGX0˙uVXV
33 1 27 3 6 lflcl WLVecGFXVGXBaseD
34 21 26 32 33 syl3anc WLVecXVGFGX0˙uVGXBaseD
35 simpl3 WLVecXVGFGX0˙uVGX0˙
36 eqid invrD=invrD
37 27 2 36 drnginvrcl DDivRingGXBaseDGX0˙invrDGXBaseD
38 31 34 35 37 syl3anc WLVecXVGFGX0˙uVinvrDGXBaseD
39 eqid D=D
40 27 39 ringcl DRingGuBaseDinvrDGXBaseDGuDinvrDGXBaseD
41 25 29 38 40 syl3anc WLVecXVGFGX0˙uVGuDinvrDGXBaseD
42 eqid W=W
43 3 1 42 27 lmodvscl WLModGuDinvrDGXBaseDXVGuDinvrDGXWXV
44 22 41 32 43 syl3anc WLVecXVGFGX0˙uVGuDinvrDGXWXV
45 eqid +W=+W
46 eqid -W=-W
47 3 45 46 lmodvnpcan WLModuVGuDinvrDGXWXVu-WGuDinvrDGXWX+WGuDinvrDGXWX=u
48 22 23 44 47 syl3anc WLVecXVGFGX0˙uVu-WGuDinvrDGXWX+WGuDinvrDGXWX=u
49 11 lsssssubg WLModLSubSpWSubGrpW
50 22 49 syl WLVecXVGFGX0˙uVLSubSpWSubGrpW
51 13 adantr WLVecXVGFGX0˙uVKGLSubSpW
52 50 51 sseldd WLVecXVGFGX0˙uVKGSubGrpW
53 16 adantr WLVecXVGFGX0˙uVNXLSubSpW
54 50 53 sseldd WLVecXVGFGX0˙uVNXSubGrpW
55 3 46 lmodvsubcl WLModuVGuDinvrDGXWXVu-WGuDinvrDGXWXV
56 22 23 44 55 syl3anc WLVecXVGFGX0˙uVu-WGuDinvrDGXWXV
57 eqid -D=-D
58 1 57 3 46 6 lflsub WLModGFuVGuDinvrDGXWXVGu-WGuDinvrDGXWX=Gu-DGGuDinvrDGXWX
59 22 26 23 44 58 syl112anc WLVecXVGFGX0˙uVGu-WGuDinvrDGXWX=Gu-DGGuDinvrDGXWX
60 1 27 39 3 42 6 lflmul WLModGFGuDinvrDGXBaseDXVGGuDinvrDGXWX=GuDinvrDGXDGX
61 22 26 41 32 60 syl112anc WLVecXVGFGX0˙uVGGuDinvrDGXWX=GuDinvrDGXDGX
62 27 39 ringass DRingGuBaseDinvrDGXBaseDGXBaseDGuDinvrDGXDGX=GuDinvrDGXDGX
63 25 29 38 34 62 syl13anc WLVecXVGFGX0˙uVGuDinvrDGXDGX=GuDinvrDGXDGX
64 eqid 1D=1D
65 27 2 39 64 36 drnginvrl DDivRingGXBaseDGX0˙invrDGXDGX=1D
66 31 34 35 65 syl3anc WLVecXVGFGX0˙uVinvrDGXDGX=1D
67 66 oveq2d WLVecXVGFGX0˙uVGuDinvrDGXDGX=GuD1D
68 27 39 64 ringridm DRingGuBaseDGuD1D=Gu
69 25 29 68 syl2anc WLVecXVGFGX0˙uVGuD1D=Gu
70 67 69 eqtrd WLVecXVGFGX0˙uVGuDinvrDGXDGX=Gu
71 61 63 70 3eqtrd WLVecXVGFGX0˙uVGGuDinvrDGXWX=Gu
72 71 oveq2d WLVecXVGFGX0˙uVGu-DGGuDinvrDGXWX=Gu-DGu
73 1 lmodfgrp WLModDGrp
74 22 73 syl WLVecXVGFGX0˙uVDGrp
75 27 2 57 grpsubid DGrpGuBaseDGu-DGu=0˙
76 74 29 75 syl2anc WLVecXVGFGX0˙uVGu-DGu=0˙
77 59 72 76 3eqtrd WLVecXVGFGX0˙uVGu-WGuDinvrDGXWX=0˙
78 3 1 2 6 7 ellkr WLVecGFu-WGuDinvrDGXWXKGu-WGuDinvrDGXWXVGu-WGuDinvrDGXWX=0˙
79 21 26 78 syl2anc WLVecXVGFGX0˙uVu-WGuDinvrDGXWXKGu-WGuDinvrDGXWXVGu-WGuDinvrDGXWX=0˙
80 56 77 79 mpbir2and WLVecXVGFGX0˙uVu-WGuDinvrDGXWXKG
81 3 42 1 27 4 22 41 32 lspsneli WLVecXVGFGX0˙uVGuDinvrDGXWXNX
82 45 5 lsmelvali KGSubGrpWNXSubGrpWu-WGuDinvrDGXWXKGGuDinvrDGXWXNXu-WGuDinvrDGXWX+WGuDinvrDGXWXKG˙NX
83 52 54 80 81 82 syl22anc WLVecXVGFGX0˙uVu-WGuDinvrDGXWX+WGuDinvrDGXWXKG˙NX
84 48 83 eqeltrrd WLVecXVGFGX0˙uVuKG˙NX
85 20 84 eqelssd WLVecXVGFGX0˙KG˙NX=V