Metamath Proof Explorer


Theorem lmodvnpcan

Description: Cancellation law for vector subtraction ( npcan analog). (Contributed by NM, 19-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v V=BaseW
lmod4.p +˙=+W
lmodvaddsub4.m -˙=-W
Assertion lmodvnpcan WLModAVBVA-˙B+˙B=A

Proof

Step Hyp Ref Expression
1 lmod4.v V=BaseW
2 lmod4.p +˙=+W
3 lmodvaddsub4.m -˙=-W
4 lmodgrp WLModWGrp
5 1 2 3 grpnpcan WGrpAVBVA-˙B+˙B=A
6 4 5 syl3an1 WLModAVBVA-˙B+˙B=A