| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkrlsp.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lkrlsp.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
| 3 |
|
lkrlsp.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
lkrlsp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 5 |
|
lkrlsp.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 6 |
|
lkrlsp.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 7 |
|
lkrlsp.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
| 8 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → 𝑊 ∈ LMod ) |
| 10 |
|
simp2r |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → 𝐺 ∈ 𝐹 ) |
| 11 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 12 |
6 7 11
|
lkrlss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 13 |
9 10 12
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 14 |
|
simp2l |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → 𝑋 ∈ 𝑉 ) |
| 15 |
3 11 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 |
9 14 15
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 17 |
11 5
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 18 |
9 13 16 17
|
syl3anc |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 19 |
3 11
|
lssss |
⊢ ( ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSubSp ‘ 𝑊 ) → ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ 𝑉 ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ 𝑉 ) |
| 21 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → 𝑊 ∈ LVec ) |
| 22 |
21 8
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 23 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → 𝑢 ∈ 𝑉 ) |
| 24 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐷 ∈ Ring ) |
| 25 |
22 24
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → 𝐷 ∈ Ring ) |
| 26 |
|
simpl2r |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → 𝐺 ∈ 𝐹 ) |
| 27 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 28 |
1 27 3 6
|
lflcl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑢 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ 𝐷 ) ) |
| 29 |
21 26 23 28
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ 𝐷 ) ) |
| 30 |
1
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐷 ∈ DivRing ) |
| 31 |
21 30
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → 𝐷 ∈ DivRing ) |
| 32 |
|
simpl2l |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 33 |
1 27 3 6
|
lflcl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 34 |
21 26 32 33
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
| 35 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) ≠ 0 ) |
| 36 |
|
eqid |
⊢ ( invr ‘ 𝐷 ) = ( invr ‘ 𝐷 ) |
| 37 |
27 2 36
|
drnginvrcl |
⊢ ( ( 𝐷 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐷 ) ) |
| 38 |
31 34 35 37
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐷 ) ) |
| 39 |
|
eqid |
⊢ ( .r ‘ 𝐷 ) = ( .r ‘ 𝐷 ) |
| 40 |
27 39
|
ringcl |
⊢ ( ( 𝐷 ∈ Ring ∧ ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ 𝐷 ) ∧ ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ ( Base ‘ 𝐷 ) ) |
| 41 |
25 29 38 40
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ ( Base ‘ 𝐷 ) ) |
| 42 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 43 |
3 1 42 27
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ ( Base ‘ 𝐷 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ) |
| 44 |
22 41 32 43
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ) |
| 45 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 46 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
| 47 |
3 45 46
|
lmodvnpcan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑢 ∈ 𝑉 ∧ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ) → ( ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ( +g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) = 𝑢 ) |
| 48 |
22 23 44 47
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ( +g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) = 𝑢 ) |
| 49 |
11
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 50 |
22 49
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 51 |
13
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝐾 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 52 |
50 51
|
sseldd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝐾 ‘ 𝐺 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 53 |
16
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 54 |
50 53
|
sseldd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 55 |
3 46
|
lmodvsubcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑢 ∈ 𝑉 ∧ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ) → ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∈ 𝑉 ) |
| 56 |
22 23 44 55
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∈ 𝑉 ) |
| 57 |
|
eqid |
⊢ ( -g ‘ 𝐷 ) = ( -g ‘ 𝐷 ) |
| 58 |
1 57 3 46 6
|
lflsub |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( 𝑢 ∈ 𝑉 ∧ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ) ) → ( 𝐺 ‘ ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) = ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) ) |
| 59 |
22 26 23 44 58
|
syl112anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝐺 ‘ ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) = ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) ) |
| 60 |
1 27 39 3 42 6
|
lflmul |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ ( Base ‘ 𝐷 ) ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝐺 ‘ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) = ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) ) |
| 61 |
22 26 41 32 60
|
syl112anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝐺 ‘ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) = ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) ) |
| 62 |
27 39
|
ringass |
⊢ ( ( 𝐷 ∈ Ring ∧ ( ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ 𝐷 ) ∧ ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) ) → ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) ) ) |
| 63 |
25 29 38 34 62
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) = ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) ) ) |
| 64 |
|
eqid |
⊢ ( 1r ‘ 𝐷 ) = ( 1r ‘ 𝐷 ) |
| 65 |
27 2 39 64 36
|
drnginvrl |
⊢ ( ( 𝐷 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) = ( 1r ‘ 𝐷 ) ) |
| 66 |
31 34 35 65
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) = ( 1r ‘ 𝐷 ) ) |
| 67 |
66
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) ) = ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( 1r ‘ 𝐷 ) ) ) |
| 68 |
27 39 64
|
ringridm |
⊢ ( ( 𝐷 ∈ Ring ∧ ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( 1r ‘ 𝐷 ) ) = ( 𝐺 ‘ 𝑢 ) ) |
| 69 |
25 29 68
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( 1r ‘ 𝐷 ) ) = ( 𝐺 ‘ 𝑢 ) ) |
| 70 |
67 69
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝐷 ) ( 𝐺 ‘ 𝑋 ) ) ) = ( 𝐺 ‘ 𝑢 ) ) |
| 71 |
61 63 70
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝐺 ‘ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) = ( 𝐺 ‘ 𝑢 ) ) |
| 72 |
71
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) = ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑢 ) ) ) |
| 73 |
1
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → 𝐷 ∈ Grp ) |
| 74 |
22 73
|
syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → 𝐷 ∈ Grp ) |
| 75 |
27 2 57
|
grpsubid |
⊢ ( ( 𝐷 ∈ Grp ∧ ( 𝐺 ‘ 𝑢 ) ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑢 ) ) = 0 ) |
| 76 |
74 29 75
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑢 ) ( -g ‘ 𝐷 ) ( 𝐺 ‘ 𝑢 ) ) = 0 ) |
| 77 |
59 72 76
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝐺 ‘ ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) = 0 ) |
| 78 |
3 1 2 6 7
|
ellkr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∈ 𝑉 ∧ ( 𝐺 ‘ ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) = 0 ) ) ) |
| 79 |
21 26 78
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∈ 𝑉 ∧ ( 𝐺 ‘ ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) = 0 ) ) ) |
| 80 |
56 77 79
|
mpbir2and |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∈ ( 𝐾 ‘ 𝐺 ) ) |
| 81 |
3 42 1 27 4 22 41 32
|
ellspsni |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 82 |
45 5
|
lsmelvali |
⊢ ( ( ( ( 𝐾 ‘ 𝐺 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∈ ( 𝐾 ‘ 𝐺 ) ∧ ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ( +g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∈ ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 83 |
52 54 80 81 82
|
syl22anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → ( ( 𝑢 ( -g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ( +g ‘ 𝑊 ) ( ( ( 𝐺 ‘ 𝑢 ) ( .r ‘ 𝐷 ) ( ( invr ‘ 𝐷 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ∈ ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 84 |
48 83
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) ∧ 𝑢 ∈ 𝑉 ) → 𝑢 ∈ ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 85 |
20 84
|
eqelssd |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) |