Step |
Hyp |
Ref |
Expression |
1 |
|
lkrlsp2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lkrlsp2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lkrlsp2.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
4 |
|
lkrlsp2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
5 |
|
lkrlsp2.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
6 |
|
simp2l |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ∈ 𝑉 ) |
7 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐺 ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
8 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑊 ∈ LVec ) |
9 |
|
simp2r |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝐺 ∈ 𝐹 ) |
10 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
12 |
1 10 11 4 5
|
ellkr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ) → ( 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
13 |
8 9 12
|
syl2anc |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
14 |
6 7 13
|
mpbir2and |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ) |
15 |
14
|
3expia |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ) → ( ( 𝐺 ‘ 𝑋 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ) ) |
16 |
15
|
necon3bd |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ) → ( ¬ 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) → ( 𝐺 ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
17 |
16
|
3impia |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ¬ 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ) → ( 𝐺 ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
18 |
10 11 1 2 3 4 5
|
lkrlsp |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) |
19 |
17 18
|
syld3an3 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹 ) ∧ ¬ 𝑋 ∈ ( 𝐾 ‘ 𝐺 ) ) → ( ( 𝐾 ‘ 𝐺 ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) |