Step |
Hyp |
Ref |
Expression |
1 |
|
lkrlsp2.v |
|- V = ( Base ` W ) |
2 |
|
lkrlsp2.n |
|- N = ( LSpan ` W ) |
3 |
|
lkrlsp2.p |
|- .(+) = ( LSSum ` W ) |
4 |
|
lkrlsp2.f |
|- F = ( LFnl ` W ) |
5 |
|
lkrlsp2.k |
|- K = ( LKer ` W ) |
6 |
|
simp2l |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) /\ ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) -> X e. V ) |
7 |
|
simp3 |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) /\ ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) -> ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) |
8 |
|
simp1 |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) /\ ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) -> W e. LVec ) |
9 |
|
simp2r |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) /\ ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) -> G e. F ) |
10 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
11 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
12 |
1 10 11 4 5
|
ellkr |
|- ( ( W e. LVec /\ G e. F ) -> ( X e. ( K ` G ) <-> ( X e. V /\ ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) ) ) |
13 |
8 9 12
|
syl2anc |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) /\ ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) -> ( X e. ( K ` G ) <-> ( X e. V /\ ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) ) ) |
14 |
6 7 13
|
mpbir2and |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) /\ ( G ` X ) = ( 0g ` ( Scalar ` W ) ) ) -> X e. ( K ` G ) ) |
15 |
14
|
3expia |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) ) -> ( ( G ` X ) = ( 0g ` ( Scalar ` W ) ) -> X e. ( K ` G ) ) ) |
16 |
15
|
necon3bd |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) ) -> ( -. X e. ( K ` G ) -> ( G ` X ) =/= ( 0g ` ( Scalar ` W ) ) ) ) |
17 |
16
|
3impia |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) /\ -. X e. ( K ` G ) ) -> ( G ` X ) =/= ( 0g ` ( Scalar ` W ) ) ) |
18 |
10 11 1 2 3 4 5
|
lkrlsp |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) /\ ( G ` X ) =/= ( 0g ` ( Scalar ` W ) ) ) -> ( ( K ` G ) .(+) ( N ` { X } ) ) = V ) |
19 |
17 18
|
syld3an3 |
|- ( ( W e. LVec /\ ( X e. V /\ G e. F ) /\ -. X e. ( K ` G ) ) -> ( ( K ` G ) .(+) ( N ` { X } ) ) = V ) |