| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqlkr3.v |
|- V = ( Base ` W ) |
| 2 |
|
eqlkr3.s |
|- S = ( Scalar ` W ) |
| 3 |
|
eqlkr3.r |
|- R = ( Base ` S ) |
| 4 |
|
eqlkr3.o |
|- .0. = ( 0g ` S ) |
| 5 |
|
eqlkr3.f |
|- F = ( LFnl ` W ) |
| 6 |
|
eqlkr3.k |
|- K = ( LKer ` W ) |
| 7 |
|
eqlkr3.w |
|- ( ph -> W e. LVec ) |
| 8 |
|
eqlkr3.x |
|- ( ph -> X e. V ) |
| 9 |
|
eqlkr3.g |
|- ( ph -> G e. F ) |
| 10 |
|
eqlkr3.h |
|- ( ph -> H e. F ) |
| 11 |
|
eqlkr3.e |
|- ( ph -> ( K ` G ) = ( K ` H ) ) |
| 12 |
|
eqlkr3.a |
|- ( ph -> ( G ` X ) = ( H ` X ) ) |
| 13 |
|
eqlkr3.n |
|- ( ph -> ( G ` X ) =/= .0. ) |
| 14 |
2 3 1 5
|
lflf |
|- ( ( W e. LVec /\ G e. F ) -> G : V --> R ) |
| 15 |
7 9 14
|
syl2anc |
|- ( ph -> G : V --> R ) |
| 16 |
15
|
ffnd |
|- ( ph -> G Fn V ) |
| 17 |
2 3 1 5
|
lflf |
|- ( ( W e. LVec /\ H e. F ) -> H : V --> R ) |
| 18 |
7 10 17
|
syl2anc |
|- ( ph -> H : V --> R ) |
| 19 |
18
|
ffnd |
|- ( ph -> H Fn V ) |
| 20 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 21 |
2 3 20 1 5 6
|
eqlkr |
|- ( ( W e. LVec /\ ( G e. F /\ H e. F ) /\ ( K ` G ) = ( K ` H ) ) -> E. r e. R A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) ) |
| 22 |
7 9 10 11 21
|
syl121anc |
|- ( ph -> E. r e. R A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) ) |
| 23 |
8
|
adantr |
|- ( ( ph /\ r e. R ) -> X e. V ) |
| 24 |
|
fveq2 |
|- ( x = X -> ( H ` x ) = ( H ` X ) ) |
| 25 |
|
fveq2 |
|- ( x = X -> ( G ` x ) = ( G ` X ) ) |
| 26 |
25
|
oveq1d |
|- ( x = X -> ( ( G ` x ) ( .r ` S ) r ) = ( ( G ` X ) ( .r ` S ) r ) ) |
| 27 |
24 26
|
eqeq12d |
|- ( x = X -> ( ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) <-> ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) ) |
| 28 |
27
|
rspcv |
|- ( X e. V -> ( A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) -> ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) ) |
| 29 |
23 28
|
syl |
|- ( ( ph /\ r e. R ) -> ( A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) -> ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) ) |
| 30 |
12
|
adantr |
|- ( ( ph /\ r e. R ) -> ( G ` X ) = ( H ` X ) ) |
| 31 |
30
|
adantr |
|- ( ( ( ph /\ r e. R ) /\ ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) -> ( G ` X ) = ( H ` X ) ) |
| 32 |
|
simpr |
|- ( ( ( ph /\ r e. R ) /\ ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) -> ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) |
| 33 |
31 32
|
eqtr2d |
|- ( ( ( ph /\ r e. R ) /\ ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) -> ( ( G ` X ) ( .r ` S ) r ) = ( G ` X ) ) |
| 34 |
33
|
oveq2d |
|- ( ( ( ph /\ r e. R ) /\ ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) -> ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( ( G ` X ) ( .r ` S ) r ) ) = ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( G ` X ) ) ) |
| 35 |
2
|
lvecdrng |
|- ( W e. LVec -> S e. DivRing ) |
| 36 |
7 35
|
syl |
|- ( ph -> S e. DivRing ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ r e. R ) -> S e. DivRing ) |
| 38 |
2 3 1 5
|
lflcl |
|- ( ( W e. LVec /\ G e. F /\ X e. V ) -> ( G ` X ) e. R ) |
| 39 |
7 9 8 38
|
syl3anc |
|- ( ph -> ( G ` X ) e. R ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ r e. R ) -> ( G ` X ) e. R ) |
| 41 |
13
|
adantr |
|- ( ( ph /\ r e. R ) -> ( G ` X ) =/= .0. ) |
| 42 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 43 |
|
eqid |
|- ( invr ` S ) = ( invr ` S ) |
| 44 |
3 4 20 42 43
|
drnginvrl |
|- ( ( S e. DivRing /\ ( G ` X ) e. R /\ ( G ` X ) =/= .0. ) -> ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( G ` X ) ) = ( 1r ` S ) ) |
| 45 |
37 40 41 44
|
syl3anc |
|- ( ( ph /\ r e. R ) -> ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( G ` X ) ) = ( 1r ` S ) ) |
| 46 |
45
|
oveq1d |
|- ( ( ph /\ r e. R ) -> ( ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( G ` X ) ) ( .r ` S ) r ) = ( ( 1r ` S ) ( .r ` S ) r ) ) |
| 47 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 48 |
7 47
|
syl |
|- ( ph -> W e. LMod ) |
| 49 |
2
|
lmodring |
|- ( W e. LMod -> S e. Ring ) |
| 50 |
48 49
|
syl |
|- ( ph -> S e. Ring ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ r e. R ) -> S e. Ring ) |
| 52 |
3 4 43
|
drnginvrcl |
|- ( ( S e. DivRing /\ ( G ` X ) e. R /\ ( G ` X ) =/= .0. ) -> ( ( invr ` S ) ` ( G ` X ) ) e. R ) |
| 53 |
37 40 41 52
|
syl3anc |
|- ( ( ph /\ r e. R ) -> ( ( invr ` S ) ` ( G ` X ) ) e. R ) |
| 54 |
|
simpr |
|- ( ( ph /\ r e. R ) -> r e. R ) |
| 55 |
3 20
|
ringass |
|- ( ( S e. Ring /\ ( ( ( invr ` S ) ` ( G ` X ) ) e. R /\ ( G ` X ) e. R /\ r e. R ) ) -> ( ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( G ` X ) ) ( .r ` S ) r ) = ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( ( G ` X ) ( .r ` S ) r ) ) ) |
| 56 |
51 53 40 54 55
|
syl13anc |
|- ( ( ph /\ r e. R ) -> ( ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( G ` X ) ) ( .r ` S ) r ) = ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( ( G ` X ) ( .r ` S ) r ) ) ) |
| 57 |
3 20 42
|
ringlidm |
|- ( ( S e. Ring /\ r e. R ) -> ( ( 1r ` S ) ( .r ` S ) r ) = r ) |
| 58 |
51 54 57
|
syl2anc |
|- ( ( ph /\ r e. R ) -> ( ( 1r ` S ) ( .r ` S ) r ) = r ) |
| 59 |
46 56 58
|
3eqtr3d |
|- ( ( ph /\ r e. R ) -> ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( ( G ` X ) ( .r ` S ) r ) ) = r ) |
| 60 |
59
|
adantr |
|- ( ( ( ph /\ r e. R ) /\ ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) -> ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( ( G ` X ) ( .r ` S ) r ) ) = r ) |
| 61 |
45
|
adantr |
|- ( ( ( ph /\ r e. R ) /\ ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) -> ( ( ( invr ` S ) ` ( G ` X ) ) ( .r ` S ) ( G ` X ) ) = ( 1r ` S ) ) |
| 62 |
34 60 61
|
3eqtr3d |
|- ( ( ( ph /\ r e. R ) /\ ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) ) -> r = ( 1r ` S ) ) |
| 63 |
62
|
ex |
|- ( ( ph /\ r e. R ) -> ( ( H ` X ) = ( ( G ` X ) ( .r ` S ) r ) -> r = ( 1r ` S ) ) ) |
| 64 |
29 63
|
syld |
|- ( ( ph /\ r e. R ) -> ( A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) -> r = ( 1r ` S ) ) ) |
| 65 |
64
|
ancrd |
|- ( ( ph /\ r e. R ) -> ( A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) -> ( r = ( 1r ` S ) /\ A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) ) ) ) |
| 66 |
65
|
reximdva |
|- ( ph -> ( E. r e. R A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) -> E. r e. R ( r = ( 1r ` S ) /\ A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) ) ) ) |
| 67 |
22 66
|
mpd |
|- ( ph -> E. r e. R ( r = ( 1r ` S ) /\ A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) ) ) |
| 68 |
3 42
|
ringidcl |
|- ( S e. Ring -> ( 1r ` S ) e. R ) |
| 69 |
50 68
|
syl |
|- ( ph -> ( 1r ` S ) e. R ) |
| 70 |
|
oveq2 |
|- ( r = ( 1r ` S ) -> ( ( G ` x ) ( .r ` S ) r ) = ( ( G ` x ) ( .r ` S ) ( 1r ` S ) ) ) |
| 71 |
70
|
eqeq2d |
|- ( r = ( 1r ` S ) -> ( ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) <-> ( H ` x ) = ( ( G ` x ) ( .r ` S ) ( 1r ` S ) ) ) ) |
| 72 |
71
|
ralbidv |
|- ( r = ( 1r ` S ) -> ( A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) <-> A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) ( 1r ` S ) ) ) ) |
| 73 |
72
|
ceqsrexv |
|- ( ( 1r ` S ) e. R -> ( E. r e. R ( r = ( 1r ` S ) /\ A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) ) <-> A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) ( 1r ` S ) ) ) ) |
| 74 |
69 73
|
syl |
|- ( ph -> ( E. r e. R ( r = ( 1r ` S ) /\ A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) r ) ) <-> A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) ( 1r ` S ) ) ) ) |
| 75 |
67 74
|
mpbid |
|- ( ph -> A. x e. V ( H ` x ) = ( ( G ` x ) ( .r ` S ) ( 1r ` S ) ) ) |
| 76 |
75
|
r19.21bi |
|- ( ( ph /\ x e. V ) -> ( H ` x ) = ( ( G ` x ) ( .r ` S ) ( 1r ` S ) ) ) |
| 77 |
48
|
adantr |
|- ( ( ph /\ x e. V ) -> W e. LMod ) |
| 78 |
77 49
|
syl |
|- ( ( ph /\ x e. V ) -> S e. Ring ) |
| 79 |
7
|
adantr |
|- ( ( ph /\ x e. V ) -> W e. LVec ) |
| 80 |
9
|
adantr |
|- ( ( ph /\ x e. V ) -> G e. F ) |
| 81 |
|
simpr |
|- ( ( ph /\ x e. V ) -> x e. V ) |
| 82 |
2 3 1 5
|
lflcl |
|- ( ( W e. LVec /\ G e. F /\ x e. V ) -> ( G ` x ) e. R ) |
| 83 |
79 80 81 82
|
syl3anc |
|- ( ( ph /\ x e. V ) -> ( G ` x ) e. R ) |
| 84 |
3 20 42
|
ringridm |
|- ( ( S e. Ring /\ ( G ` x ) e. R ) -> ( ( G ` x ) ( .r ` S ) ( 1r ` S ) ) = ( G ` x ) ) |
| 85 |
78 83 84
|
syl2anc |
|- ( ( ph /\ x e. V ) -> ( ( G ` x ) ( .r ` S ) ( 1r ` S ) ) = ( G ` x ) ) |
| 86 |
76 85
|
eqtr2d |
|- ( ( ph /\ x e. V ) -> ( G ` x ) = ( H ` x ) ) |
| 87 |
16 19 86
|
eqfnfvd |
|- ( ph -> G = H ) |