Step |
Hyp |
Ref |
Expression |
1 |
|
eqlkr3.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
eqlkr3.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
3 |
|
eqlkr3.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
4 |
|
eqlkr3.o |
⊢ 0 = ( 0g ‘ 𝑆 ) |
5 |
|
eqlkr3.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
6 |
|
eqlkr3.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
7 |
|
eqlkr3.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
8 |
|
eqlkr3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
|
eqlkr3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
10 |
|
eqlkr3.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
11 |
|
eqlkr3.e |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) |
12 |
|
eqlkr3.a |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ( 𝐻 ‘ 𝑋 ) ) |
13 |
|
eqlkr3.n |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ≠ 0 ) |
14 |
2 3 1 5
|
lflf |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ) → 𝐺 : 𝑉 ⟶ 𝑅 ) |
15 |
7 9 14
|
syl2anc |
⊢ ( 𝜑 → 𝐺 : 𝑉 ⟶ 𝑅 ) |
16 |
15
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝑉 ) |
17 |
2 3 1 5
|
lflf |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹 ) → 𝐻 : 𝑉 ⟶ 𝑅 ) |
18 |
7 10 17
|
syl2anc |
⊢ ( 𝜑 → 𝐻 : 𝑉 ⟶ 𝑅 ) |
19 |
18
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn 𝑉 ) |
20 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
21 |
2 3 20 1 5 6
|
eqlkr |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) ) |
22 |
7 9 10 11 21
|
syl121anc |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) ) |
23 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑋 ∈ 𝑉 ) |
24 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑋 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) |
27 |
24 26
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) ↔ ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) ) |
28 |
27
|
rspcv |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) → ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) ) |
29 |
23 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) → ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) ) |
30 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐻 ‘ 𝑋 ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐻 ‘ 𝑋 ) ) |
32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) → ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) |
33 |
31 32
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) → ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) = ( 𝐺 ‘ 𝑋 ) ) |
34 |
33
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) → ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) = ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑋 ) ) ) |
35 |
2
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝑆 ∈ DivRing ) |
36 |
7 35
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ DivRing ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑆 ∈ DivRing ) |
38 |
2 3 1 5
|
lflcl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) ∈ 𝑅 ) |
39 |
7 9 8 38
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ 𝑅 ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐺 ‘ 𝑋 ) ∈ 𝑅 ) |
41 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐺 ‘ 𝑋 ) ≠ 0 ) |
42 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
43 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
44 |
3 4 20 42 43
|
drnginvrl |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ 𝑅 ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑋 ) ) = ( 1r ‘ 𝑆 ) ) |
45 |
37 40 41 44
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑋 ) ) = ( 1r ‘ 𝑆 ) ) |
46 |
45
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) 𝑟 ) = ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑟 ) ) |
47 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
48 |
7 47
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
49 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝑆 ∈ Ring ) |
50 |
48 49
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑆 ∈ Ring ) |
52 |
3 4 43
|
drnginvrcl |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ 𝑅 ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ 𝑅 ) |
53 |
37 40 41 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ 𝑅 ) |
54 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ 𝑅 ) |
55 |
3 20
|
ringass |
⊢ ( ( 𝑆 ∈ Ring ∧ ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ 𝑅 ∧ ( 𝐺 ‘ 𝑋 ) ∈ 𝑅 ∧ 𝑟 ∈ 𝑅 ) ) → ( ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) 𝑟 ) = ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) ) |
56 |
51 53 40 54 55
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) 𝑟 ) = ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) ) |
57 |
3 20 42
|
ringlidm |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑟 ∈ 𝑅 ) → ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑟 ) = 𝑟 ) |
58 |
51 54 57
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) 𝑟 ) = 𝑟 ) |
59 |
46 56 58
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) = 𝑟 ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) → ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) = 𝑟 ) |
61 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) → ( ( ( invr ‘ 𝑆 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ( .r ‘ 𝑆 ) ( 𝐺 ‘ 𝑋 ) ) = ( 1r ‘ 𝑆 ) ) |
62 |
34 60 61
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) ∧ ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) ) → 𝑟 = ( 1r ‘ 𝑆 ) ) |
63 |
62
|
ex |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( ( 𝐻 ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑟 ) → 𝑟 = ( 1r ‘ 𝑆 ) ) ) |
64 |
29 63
|
syld |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) → 𝑟 = ( 1r ‘ 𝑆 ) ) ) |
65 |
64
|
ancrd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) → ( 𝑟 = ( 1r ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) ) ) ) |
66 |
65
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) → ∃ 𝑟 ∈ 𝑅 ( 𝑟 = ( 1r ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) ) ) ) |
67 |
22 66
|
mpd |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑅 ( 𝑟 = ( 1r ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) ) ) |
68 |
3 42
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ 𝑅 ) |
69 |
50 68
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ 𝑅 ) |
70 |
|
oveq2 |
⊢ ( 𝑟 = ( 1r ‘ 𝑆 ) → ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
71 |
70
|
eqeq2d |
⊢ ( 𝑟 = ( 1r ‘ 𝑆 ) → ( ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) ↔ ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ) |
72 |
71
|
ralbidv |
⊢ ( 𝑟 = ( 1r ‘ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ) |
73 |
72
|
ceqsrexv |
⊢ ( ( 1r ‘ 𝑆 ) ∈ 𝑅 → ( ∃ 𝑟 ∈ 𝑅 ( 𝑟 = ( 1r ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ) |
74 |
69 73
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ( 𝑟 = ( 1r ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) 𝑟 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) ) |
75 |
67 74
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
76 |
75
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) ) |
77 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
78 |
77 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑆 ∈ Ring ) |
79 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ LVec ) |
80 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝐺 ∈ 𝐹 ) |
81 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
82 |
2 3 1 5
|
lflcl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑅 ) |
83 |
79 80 81 82
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑅 ) |
84 |
3 20 42
|
ringridm |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑅 ) → ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
85 |
78 83 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐺 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
86 |
76 85
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) |
87 |
16 19 86
|
eqfnfvd |
⊢ ( 𝜑 → 𝐺 = 𝐻 ) |