Metamath Proof Explorer


Theorem eqlkr

Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 18-Apr-2014)

Ref Expression
Hypotheses eqlkr.d D = Scalar W
eqlkr.k K = Base D
eqlkr.t · ˙ = D
eqlkr.v V = Base W
eqlkr.f F = LFnl W
eqlkr.l L = LKer W
Assertion eqlkr W LVec G F H F L G = L H r K x V H x = G x · ˙ r

Proof

Step Hyp Ref Expression
1 eqlkr.d D = Scalar W
2 eqlkr.k K = Base D
3 eqlkr.t · ˙ = D
4 eqlkr.v V = Base W
5 eqlkr.f F = LFnl W
6 eqlkr.l L = LKer W
7 simpl1 W LVec G F H F L G = L H G = V × 0 D W LVec
8 lveclmod W LVec W LMod
9 1 lmodring W LMod D Ring
10 8 9 syl W LVec D Ring
11 7 10 syl W LVec G F H F L G = L H G = V × 0 D D Ring
12 eqid 1 D = 1 D
13 2 12 ringidcl D Ring 1 D K
14 11 13 syl W LVec G F H F L G = L H G = V × 0 D 1 D K
15 simp11 W LVec G F H F L G = L H G = V × 0 D x V W LVec
16 15 10 syl W LVec G F H F L G = L H G = V × 0 D x V D Ring
17 simp12l W LVec G F H F L G = L H G = V × 0 D x V G F
18 simp3 W LVec G F H F L G = L H G = V × 0 D x V x V
19 1 2 4 5 lflcl W LVec G F x V G x K
20 15 17 18 19 syl3anc W LVec G F H F L G = L H G = V × 0 D x V G x K
21 2 3 12 ringridm D Ring G x K G x · ˙ 1 D = G x
22 16 20 21 syl2anc W LVec G F H F L G = L H G = V × 0 D x V G x · ˙ 1 D = G x
23 simp2 W LVec G F H F L G = L H G = V × 0 D x V G = V × 0 D
24 simp13 W LVec G F H F L G = L H G = V × 0 D x V L G = L H
25 15 8 syl W LVec G F H F L G = L H G = V × 0 D x V W LMod
26 eqid 0 D = 0 D
27 1 26 4 5 6 lkr0f W LMod G F L G = V G = V × 0 D
28 25 17 27 syl2anc W LVec G F H F L G = L H G = V × 0 D x V L G = V G = V × 0 D
29 23 28 mpbird W LVec G F H F L G = L H G = V × 0 D x V L G = V
30 24 29 eqtr3d W LVec G F H F L G = L H G = V × 0 D x V L H = V
31 simp12r W LVec G F H F L G = L H G = V × 0 D x V H F
32 1 26 4 5 6 lkr0f W LMod H F L H = V H = V × 0 D
33 25 31 32 syl2anc W LVec G F H F L G = L H G = V × 0 D x V L H = V H = V × 0 D
34 30 33 mpbid W LVec G F H F L G = L H G = V × 0 D x V H = V × 0 D
35 23 34 eqtr4d W LVec G F H F L G = L H G = V × 0 D x V G = H
36 35 fveq1d W LVec G F H F L G = L H G = V × 0 D x V G x = H x
37 22 36 eqtr2d W LVec G F H F L G = L H G = V × 0 D x V H x = G x · ˙ 1 D
38 37 3expia W LVec G F H F L G = L H G = V × 0 D x V H x = G x · ˙ 1 D
39 38 ralrimiv W LVec G F H F L G = L H G = V × 0 D x V H x = G x · ˙ 1 D
40 oveq2 r = 1 D G x · ˙ r = G x · ˙ 1 D
41 40 eqeq2d r = 1 D H x = G x · ˙ r H x = G x · ˙ 1 D
42 41 ralbidv r = 1 D x V H x = G x · ˙ r x V H x = G x · ˙ 1 D
43 42 rspcev 1 D K x V H x = G x · ˙ 1 D r K x V H x = G x · ˙ r
44 14 39 43 syl2anc W LVec G F H F L G = L H G = V × 0 D r K x V H x = G x · ˙ r
45 simpl1 W LVec G F H F L G = L H G V × 0 D W LVec
46 simpl2l W LVec G F H F L G = L H G V × 0 D G F
47 simpr W LVec G F H F L G = L H G V × 0 D G V × 0 D
48 1 26 12 4 5 lfl1 W LVec G F G V × 0 D z V G z = 1 D
49 45 46 47 48 syl3anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D
50 simpl1 W LVec G F H F L G = L H G V × 0 D z V G z = 1 D W LVec
51 simpl2r W LVec G F H F L G = L H G V × 0 D z V G z = 1 D H F
52 simpr2 W LVec G F H F L G = L H G V × 0 D z V G z = 1 D z V
53 1 2 4 5 lflcl W LVec H F z V H z K
54 50 51 52 53 syl3anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D H z K
55 simp11 W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V W LVec
56 55 8 syl W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V W LMod
57 simp12r W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H F
58 simp12l W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G F
59 simp3 W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V x V
60 1 2 4 5 lflcl W LMod G F x V G x K
61 56 58 59 60 syl3anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G x K
62 simp22 W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V z V
63 eqid W = W
64 1 2 3 4 63 5 lflmul W LMod H F G x K z V H G x W z = G x · ˙ H z
65 56 57 61 62 64 syl112anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H G x W z = G x · ˙ H z
66 65 oveq2d W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H x - D H G x W z = H x - D G x · ˙ H z
67 4 1 63 2 lmodvscl W LMod G x K z V G x W z V
68 56 61 62 67 syl3anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G x W z V
69 eqid - D = - D
70 eqid - W = - W
71 1 69 4 70 5 lflsub W LMod H F x V G x W z V H x - W G x W z = H x - D H G x W z
72 56 57 59 68 71 syl112anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H x - W G x W z = H x - D H G x W z
73 4 70 lmodvsubcl W LMod x V G x W z V x - W G x W z V
74 56 59 68 73 syl3anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V x - W G x W z V
75 1 69 4 70 5 lflsub W LMod G F x V G x W z V G x - W G x W z = G x - D G G x W z
76 56 58 59 68 75 syl112anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G x - W G x W z = G x - D G G x W z
77 55 58 59 19 syl3anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G x K
78 1 2 3 4 63 5 lflmul W LMod G F G x K z V G G x W z = G x · ˙ G z
79 56 58 77 62 78 syl112anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G G x W z = G x · ˙ G z
80 simp23 W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G z = 1 D
81 80 oveq2d W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G x · ˙ G z = G x · ˙ 1 D
82 55 10 syl W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V D Ring
83 82 77 21 syl2anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G x · ˙ 1 D = G x
84 79 81 83 3eqtrd W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G G x W z = G x
85 84 oveq2d W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G x - D G G x W z = G x - D G x
86 1 lmodfgrp W LMod D Grp
87 8 86 syl W LVec D Grp
88 55 87 syl W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V D Grp
89 2 26 69 grpsubid D Grp G x K G x - D G x = 0 D
90 88 77 89 syl2anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G x - D G x = 0 D
91 76 85 90 3eqtrd W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G x - W G x W z = 0 D
92 4 1 26 5 6 ellkr W LVec G F x - W G x W z L G x - W G x W z V G x - W G x W z = 0 D
93 55 58 92 syl2anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V x - W G x W z L G x - W G x W z V G x - W G x W z = 0 D
94 74 91 93 mpbir2and W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V x - W G x W z L G
95 simp13 W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V L G = L H
96 94 95 eleqtrd W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V x - W G x W z L H
97 4 1 26 5 6 ellkr W LVec H F x - W G x W z L H x - W G x W z V H x - W G x W z = 0 D
98 55 57 97 syl2anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V x - W G x W z L H x - W G x W z V H x - W G x W z = 0 D
99 96 98 mpbid W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V x - W G x W z V H x - W G x W z = 0 D
100 99 simprd W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H x - W G x W z = 0 D
101 72 100 eqtr3d W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H x - D H G x W z = 0 D
102 66 101 eqtr3d W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H x - D G x · ˙ H z = 0 D
103 1 2 4 5 lflcl W LVec H F x V H x K
104 55 57 59 103 syl3anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H x K
105 54 3adant3 W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H z K
106 1 2 3 lmodmcl W LMod G x K H z K G x · ˙ H z K
107 56 77 105 106 syl3anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V G x · ˙ H z K
108 2 26 69 grpsubeq0 D Grp H x K G x · ˙ H z K H x - D G x · ˙ H z = 0 D H x = G x · ˙ H z
109 88 104 107 108 syl3anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H x - D G x · ˙ H z = 0 D H x = G x · ˙ H z
110 102 109 mpbid W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H x = G x · ˙ H z
111 110 3expia W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H x = G x · ˙ H z
112 111 ralrimiv W LVec G F H F L G = L H G V × 0 D z V G z = 1 D x V H x = G x · ˙ H z
113 oveq2 r = H z G x · ˙ r = G x · ˙ H z
114 113 eqeq2d r = H z H x = G x · ˙ r H x = G x · ˙ H z
115 114 ralbidv r = H z x V H x = G x · ˙ r x V H x = G x · ˙ H z
116 115 rspcev H z K x V H x = G x · ˙ H z r K x V H x = G x · ˙ r
117 54 112 116 syl2anc W LVec G F H F L G = L H G V × 0 D z V G z = 1 D r K x V H x = G x · ˙ r
118 117 3exp2 W LVec G F H F L G = L H G V × 0 D z V G z = 1 D r K x V H x = G x · ˙ r
119 118 imp W LVec G F H F L G = L H G V × 0 D z V G z = 1 D r K x V H x = G x · ˙ r
120 119 rexlimdv W LVec G F H F L G = L H G V × 0 D z V G z = 1 D r K x V H x = G x · ˙ r
121 49 120 mpd W LVec G F H F L G = L H G V × 0 D r K x V H x = G x · ˙ r
122 44 121 pm2.61dane W LVec G F H F L G = L H r K x V H x = G x · ˙ r