Step |
Hyp |
Ref |
Expression |
1 |
|
eqlkr.d |
|
2 |
|
eqlkr.k |
|
3 |
|
eqlkr.t |
|
4 |
|
eqlkr.v |
|
5 |
|
eqlkr.f |
|
6 |
|
eqlkr.l |
|
7 |
|
simpl1 |
|
8 |
|
lveclmod |
|
9 |
1
|
lmodring |
|
10 |
8 9
|
syl |
|
11 |
7 10
|
syl |
|
12 |
|
eqid |
|
13 |
2 12
|
ringidcl |
|
14 |
11 13
|
syl |
|
15 |
|
simp11 |
|
16 |
15 10
|
syl |
|
17 |
|
simp12l |
|
18 |
|
simp3 |
|
19 |
1 2 4 5
|
lflcl |
|
20 |
15 17 18 19
|
syl3anc |
|
21 |
2 3 12
|
ringridm |
|
22 |
16 20 21
|
syl2anc |
|
23 |
|
simp2 |
|
24 |
|
simp13 |
|
25 |
15 8
|
syl |
|
26 |
|
eqid |
|
27 |
1 26 4 5 6
|
lkr0f |
|
28 |
25 17 27
|
syl2anc |
|
29 |
23 28
|
mpbird |
|
30 |
24 29
|
eqtr3d |
|
31 |
|
simp12r |
|
32 |
1 26 4 5 6
|
lkr0f |
|
33 |
25 31 32
|
syl2anc |
|
34 |
30 33
|
mpbid |
|
35 |
23 34
|
eqtr4d |
|
36 |
35
|
fveq1d |
|
37 |
22 36
|
eqtr2d |
|
38 |
37
|
3expia |
|
39 |
38
|
ralrimiv |
|
40 |
|
oveq2 |
|
41 |
40
|
eqeq2d |
|
42 |
41
|
ralbidv |
|
43 |
42
|
rspcev |
|
44 |
14 39 43
|
syl2anc |
|
45 |
|
simpl1 |
|
46 |
|
simpl2l |
|
47 |
|
simpr |
|
48 |
1 26 12 4 5
|
lfl1 |
|
49 |
45 46 47 48
|
syl3anc |
|
50 |
|
simpl1 |
|
51 |
|
simpl2r |
|
52 |
|
simpr2 |
|
53 |
1 2 4 5
|
lflcl |
|
54 |
50 51 52 53
|
syl3anc |
|
55 |
|
simp11 |
|
56 |
55 8
|
syl |
|
57 |
|
simp12r |
|
58 |
|
simp12l |
|
59 |
|
simp3 |
|
60 |
1 2 4 5
|
lflcl |
|
61 |
56 58 59 60
|
syl3anc |
|
62 |
|
simp22 |
|
63 |
|
eqid |
|
64 |
1 2 3 4 63 5
|
lflmul |
|
65 |
56 57 61 62 64
|
syl112anc |
|
66 |
65
|
oveq2d |
|
67 |
4 1 63 2
|
lmodvscl |
|
68 |
56 61 62 67
|
syl3anc |
|
69 |
|
eqid |
|
70 |
|
eqid |
|
71 |
1 69 4 70 5
|
lflsub |
|
72 |
56 57 59 68 71
|
syl112anc |
|
73 |
4 70
|
lmodvsubcl |
|
74 |
56 59 68 73
|
syl3anc |
|
75 |
1 69 4 70 5
|
lflsub |
|
76 |
56 58 59 68 75
|
syl112anc |
|
77 |
55 58 59 19
|
syl3anc |
|
78 |
1 2 3 4 63 5
|
lflmul |
|
79 |
56 58 77 62 78
|
syl112anc |
|
80 |
|
simp23 |
|
81 |
80
|
oveq2d |
|
82 |
55 10
|
syl |
|
83 |
82 77 21
|
syl2anc |
|
84 |
79 81 83
|
3eqtrd |
|
85 |
84
|
oveq2d |
|
86 |
1
|
lmodfgrp |
|
87 |
8 86
|
syl |
|
88 |
55 87
|
syl |
|
89 |
2 26 69
|
grpsubid |
|
90 |
88 77 89
|
syl2anc |
|
91 |
76 85 90
|
3eqtrd |
|
92 |
4 1 26 5 6
|
ellkr |
|
93 |
55 58 92
|
syl2anc |
|
94 |
74 91 93
|
mpbir2and |
|
95 |
|
simp13 |
|
96 |
94 95
|
eleqtrd |
|
97 |
4 1 26 5 6
|
ellkr |
|
98 |
55 57 97
|
syl2anc |
|
99 |
96 98
|
mpbid |
|
100 |
99
|
simprd |
|
101 |
72 100
|
eqtr3d |
|
102 |
66 101
|
eqtr3d |
|
103 |
1 2 4 5
|
lflcl |
|
104 |
55 57 59 103
|
syl3anc |
|
105 |
54
|
3adant3 |
|
106 |
1 2 3
|
lmodmcl |
|
107 |
56 77 105 106
|
syl3anc |
|
108 |
2 26 69
|
grpsubeq0 |
|
109 |
88 104 107 108
|
syl3anc |
|
110 |
102 109
|
mpbid |
|
111 |
110
|
3expia |
|
112 |
111
|
ralrimiv |
|
113 |
|
oveq2 |
|
114 |
113
|
eqeq2d |
|
115 |
114
|
ralbidv |
|
116 |
115
|
rspcev |
|
117 |
54 112 116
|
syl2anc |
|
118 |
117
|
3exp2 |
|
119 |
118
|
imp |
|
120 |
119
|
rexlimdv |
|
121 |
49 120
|
mpd |
|
122 |
44 121
|
pm2.61dane |
|