| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfl1dim.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lfl1dim.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lfl1dim.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 4 |
|
lfl1dim.l |
⊢ 𝐿 = ( LKer ‘ 𝑊 ) |
| 5 |
|
lfl1dim.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
| 6 |
|
lfl1dim.t |
⊢ · = ( .r ‘ 𝐷 ) |
| 7 |
|
lfl1dim.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 8 |
|
lfl1dim.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 9 |
|
df-rab |
⊢ { 𝑔 ∈ 𝐹 ∣ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) } = { 𝑔 ∣ ( 𝑔 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) } |
| 10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 11 |
7 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
| 13 |
2 5 12
|
lmod0cl |
⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
| 14 |
11 13
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 17 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑊 ∈ LMod ) |
| 18 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝐺 ∈ 𝐹 ) |
| 19 |
1 2 3 5 6 12 17 18
|
lfl0sc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 20 |
16 19
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 21 |
|
sneq |
⊢ ( 𝑘 = ( 0g ‘ 𝐷 ) → { 𝑘 } = { ( 0g ‘ 𝐷 ) } ) |
| 22 |
21
|
xpeq2d |
⊢ ( 𝑘 = ( 0g ‘ 𝐷 ) → ( 𝑉 × { 𝑘 } ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑘 = ( 0g ‘ 𝐷 ) → ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 24 |
23
|
rspceeqv |
⊢ ( ( ( 0g ‘ 𝐷 ) ∈ 𝐾 ∧ 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
| 25 |
15 20 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
| 26 |
25
|
a1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 27 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
| 28 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑊 ∈ LMod ) |
| 29 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑔 ∈ 𝐹 ) |
| 30 |
1 3 4 28 29
|
lkrssv |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 𝐿 ‘ 𝑔 ) ⊆ 𝑉 ) |
| 31 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
| 32 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → 𝐺 ∈ 𝐹 ) |
| 33 |
2 12 1 3 4
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 34 |
31 32 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 35 |
34
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
| 36 |
35
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ 𝑉 ⊆ ( 𝐿 ‘ 𝑔 ) ) ) |
| 37 |
36
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑉 ⊆ ( 𝐿 ‘ 𝑔 ) ) |
| 38 |
30 37
|
eqssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 𝐿 ‘ 𝑔 ) = 𝑉 ) |
| 39 |
2 12 1 3 4
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝑔 ) = 𝑉 ↔ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 40 |
28 29 39
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( ( 𝐿 ‘ 𝑔 ) = 𝑉 ↔ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 41 |
38 40
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 42 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝐺 ∈ 𝐹 ) |
| 43 |
1 2 3 5 6 12 28 42
|
lfl0sc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 44 |
41 43
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 45 |
27 44 24
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
| 46 |
45
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 47 |
|
eqid |
⊢ ( LSHyp ‘ 𝑊 ) = ( LSHyp ‘ 𝑊 ) |
| 48 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝑊 ∈ LVec ) |
| 49 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝐺 ∈ 𝐹 ) |
| 50 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 51 |
1 2 12 47 3 4
|
lkrshp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
| 52 |
48 49 50 51
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
| 53 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝑔 ∈ 𝐹 ) |
| 54 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 55 |
1 2 12 47 3 4
|
lkrshp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐿 ‘ 𝑔 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
| 56 |
48 53 54 55
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( 𝐿 ‘ 𝑔 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
| 57 |
47 48 52 56
|
lshpcmp |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) ) |
| 58 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → 𝑊 ∈ LVec ) |
| 59 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → 𝐺 ∈ 𝐹 ) |
| 60 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → 𝑔 ∈ 𝐹 ) |
| 61 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) |
| 62 |
2 5 6 1 3 4
|
eqlkr2 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
| 63 |
58 59 60 61 62
|
syl121anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
| 64 |
63
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 65 |
57 64
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 66 |
26 46 65
|
pm2.61da2ne |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 67 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑊 ∈ LVec ) |
| 68 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → 𝐺 ∈ 𝐹 ) |
| 69 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑘 ∈ 𝐾 ) |
| 70 |
1 2 5 6 3 4 67 68 69
|
lkrscss |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 71 |
70
|
ex |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( 𝑘 ∈ 𝐾 → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) ) |
| 72 |
|
fveq2 |
⊢ ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝑔 ) = ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 73 |
72
|
sseq2d |
⊢ ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) ) |
| 74 |
73
|
biimprcd |
⊢ ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) → ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ) |
| 75 |
71 74
|
syl6 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( 𝑘 ∈ 𝐾 → ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ) ) |
| 76 |
75
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ) |
| 77 |
66 76
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 78 |
77
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ↔ ( 𝑔 ∈ 𝐹 ∧ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) ) |
| 79 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
| 80 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝐺 ∈ 𝐹 ) |
| 81 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → 𝑘 ∈ 𝐾 ) |
| 82 |
1 2 5 6 3 79 80 81
|
lflvscl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ∈ 𝐹 ) |
| 83 |
|
eleq1a |
⊢ ( ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ∈ 𝐹 → ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → 𝑔 ∈ 𝐹 ) ) |
| 84 |
82 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → 𝑔 ∈ 𝐹 ) ) |
| 85 |
84
|
pm4.71rd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ↔ ( 𝑔 ∈ 𝐹 ∧ 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) ) |
| 86 |
85
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ↔ ∃ 𝑘 ∈ 𝐾 ( 𝑔 ∈ 𝐹 ∧ 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) ) |
| 87 |
|
r19.42v |
⊢ ( ∃ 𝑘 ∈ 𝐾 ( 𝑔 ∈ 𝐹 ∧ 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ↔ ( 𝑔 ∈ 𝐹 ∧ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 88 |
86 87
|
bitr2di |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐹 ∧ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ↔ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 89 |
78 88
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ↔ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 90 |
89
|
abbidv |
⊢ ( 𝜑 → { 𝑔 ∣ ( 𝑔 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) } = { 𝑔 ∣ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) } ) |
| 91 |
9 90
|
eqtrid |
⊢ ( 𝜑 → { 𝑔 ∈ 𝐹 ∣ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) } = { 𝑔 ∣ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) } ) |