| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpcmp.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
| 2 |
|
lshpcmp.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 3 |
|
lshpcmp.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐻 ) |
| 4 |
|
lshpcmp.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 6 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 8 |
5 1 7 4
|
lshpne |
⊢ ( 𝜑 → 𝑈 ≠ ( Base ‘ 𝑊 ) ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 10 |
9 1 7 4
|
lshplss |
⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 |
5 9
|
lssss |
⊢ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 13 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 14 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
| 15 |
5 13 9 14 1 7
|
islshpsm |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝐻 ↔ ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑇 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ) |
| 16 |
3 15
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑇 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) |
| 17 |
16
|
simp3d |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) |
| 18 |
|
id |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ) |
| 19 |
18
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) → ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ) |
| 20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ LVec ) |
| 21 |
9 1 7 3
|
lshplss |
⊢ ( 𝜑 → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 23 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) ) |
| 25 |
5 9 13 14 20 22 23 24
|
lsmcv |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
| 26 |
19 25
|
syl3an1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
| 27 |
26
|
3expia |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ) → ( 𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) |
| 28 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ) → ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) |
| 29 |
28
|
sseq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ) → ( 𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ↔ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) ) |
| 30 |
28
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ) → ( 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ↔ 𝑈 = ( Base ‘ 𝑊 ) ) ) |
| 31 |
27 29 30
|
3imtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ) → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) |
| 32 |
31
|
exp42 |
⊢ ( 𝜑 → ( 𝑣 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) → ( 𝑇 ⊊ 𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) ) ) ) |
| 33 |
32
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) → ( 𝑇 ⊊ 𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) ) ) |
| 34 |
17 33
|
mpd |
⊢ ( 𝜑 → ( 𝑇 ⊊ 𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) ) |
| 35 |
12 34
|
mpid |
⊢ ( 𝜑 → ( 𝑇 ⊊ 𝑈 → 𝑈 = ( Base ‘ 𝑊 ) ) ) |
| 36 |
35
|
necon3ad |
⊢ ( 𝜑 → ( 𝑈 ≠ ( Base ‘ 𝑊 ) → ¬ 𝑇 ⊊ 𝑈 ) ) |
| 37 |
8 36
|
mpd |
⊢ ( 𝜑 → ¬ 𝑇 ⊊ 𝑈 ) |
| 38 |
|
df-pss |
⊢ ( 𝑇 ⊊ 𝑈 ↔ ( 𝑇 ⊆ 𝑈 ∧ 𝑇 ≠ 𝑈 ) ) |
| 39 |
38
|
simplbi2 |
⊢ ( 𝑇 ⊆ 𝑈 → ( 𝑇 ≠ 𝑈 → 𝑇 ⊊ 𝑈 ) ) |
| 40 |
39
|
necon1bd |
⊢ ( 𝑇 ⊆ 𝑈 → ( ¬ 𝑇 ⊊ 𝑈 → 𝑇 = 𝑈 ) ) |
| 41 |
37 40
|
syl5com |
⊢ ( 𝜑 → ( 𝑇 ⊆ 𝑈 → 𝑇 = 𝑈 ) ) |
| 42 |
|
eqimss |
⊢ ( 𝑇 = 𝑈 → 𝑇 ⊆ 𝑈 ) |
| 43 |
41 42
|
impbid1 |
⊢ ( 𝜑 → ( 𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈 ) ) |