Metamath Proof Explorer


Theorem lshpcmp

Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014)

Ref Expression
Hypotheses lshpcmp.h 𝐻 = ( LSHyp ‘ 𝑊 )
lshpcmp.w ( 𝜑𝑊 ∈ LVec )
lshpcmp.t ( 𝜑𝑇𝐻 )
lshpcmp.u ( 𝜑𝑈𝐻 )
Assertion lshpcmp ( 𝜑 → ( 𝑇𝑈𝑇 = 𝑈 ) )

Proof

Step Hyp Ref Expression
1 lshpcmp.h 𝐻 = ( LSHyp ‘ 𝑊 )
2 lshpcmp.w ( 𝜑𝑊 ∈ LVec )
3 lshpcmp.t ( 𝜑𝑇𝐻 )
4 lshpcmp.u ( 𝜑𝑈𝐻 )
5 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
6 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
7 2 6 syl ( 𝜑𝑊 ∈ LMod )
8 5 1 7 4 lshpne ( 𝜑𝑈 ≠ ( Base ‘ 𝑊 ) )
9 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
10 9 1 7 4 lshplss ( 𝜑𝑈 ∈ ( LSubSp ‘ 𝑊 ) )
11 5 9 lssss ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) )
12 10 11 syl ( 𝜑𝑈 ⊆ ( Base ‘ 𝑊 ) )
13 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
14 eqid ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 )
15 5 13 9 14 1 7 islshpsm ( 𝜑 → ( 𝑇𝐻 ↔ ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑇 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) )
16 3 15 mpbid ( 𝜑 → ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑇 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) )
17 16 simp3d ( 𝜑 → ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) )
18 id ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) )
19 18 adantrr ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) → ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) )
20 2 adantr ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ LVec )
21 9 1 7 3 lshplss ( 𝜑𝑇 ∈ ( LSubSp ‘ 𝑊 ) )
22 21 adantr ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) )
23 10 adantr ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) )
24 simpr ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) )
25 5 9 13 14 20 22 23 24 lsmcv ( ( ( 𝜑𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑇𝑈𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) )
26 19 25 syl3an1 ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇𝑈𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) )
27 26 3expia ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇𝑈 ) → ( 𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) )
28 simplrr ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇𝑈 ) → ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) )
29 28 sseq2d ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇𝑈 ) → ( 𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ↔ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) )
30 28 eqeq2d ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇𝑈 ) → ( 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ↔ 𝑈 = ( Base ‘ 𝑊 ) ) )
31 27 29 30 3imtr3d ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇𝑈 ) → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) )
32 31 exp42 ( 𝜑 → ( 𝑣 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) → ( 𝑇𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) ) ) )
33 32 rexlimdv ( 𝜑 → ( ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) → ( 𝑇𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) ) )
34 17 33 mpd ( 𝜑 → ( 𝑇𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) )
35 12 34 mpid ( 𝜑 → ( 𝑇𝑈𝑈 = ( Base ‘ 𝑊 ) ) )
36 35 necon3ad ( 𝜑 → ( 𝑈 ≠ ( Base ‘ 𝑊 ) → ¬ 𝑇𝑈 ) )
37 8 36 mpd ( 𝜑 → ¬ 𝑇𝑈 )
38 df-pss ( 𝑇𝑈 ↔ ( 𝑇𝑈𝑇𝑈 ) )
39 38 simplbi2 ( 𝑇𝑈 → ( 𝑇𝑈𝑇𝑈 ) )
40 39 necon1bd ( 𝑇𝑈 → ( ¬ 𝑇𝑈𝑇 = 𝑈 ) )
41 37 40 syl5com ( 𝜑 → ( 𝑇𝑈𝑇 = 𝑈 ) )
42 eqimss ( 𝑇 = 𝑈𝑇𝑈 )
43 41 42 impbid1 ( 𝜑 → ( 𝑇𝑈𝑇 = 𝑈 ) )