Step |
Hyp |
Ref |
Expression |
1 |
|
lshpcmp.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
2 |
|
lshpcmp.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
3 |
|
lshpcmp.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐻 ) |
4 |
|
lshpcmp.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
8 |
5 1 7 4
|
lshpne |
⊢ ( 𝜑 → 𝑈 ≠ ( Base ‘ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
10 |
9 1 7 4
|
lshplss |
⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
11 |
5 9
|
lssss |
⊢ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
13 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
15 |
5 13 9 14 1 7
|
islshpsm |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝐻 ↔ ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑇 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ) |
16 |
3 15
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑇 ≠ ( Base ‘ 𝑊 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) |
17 |
16
|
simp3d |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) |
18 |
|
id |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ) |
19 |
18
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) → ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ) |
20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ LVec ) |
21 |
9 1 7 3
|
lshplss |
⊢ ( 𝜑 → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) |
23 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) → 𝑣 ∈ ( Base ‘ 𝑊 ) ) |
25 |
5 9 13 14 20 22 23 24
|
lsmcv |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( Base ‘ 𝑊 ) ) ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
26 |
19 25
|
syl3an1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) → 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) |
27 |
26
|
3expia |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ) → ( 𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) → 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ) ) |
28 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ) → ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) |
29 |
28
|
sseq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ) → ( 𝑈 ⊆ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ↔ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) ) |
30 |
28
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ) → ( 𝑈 = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) ↔ 𝑈 = ( Base ‘ 𝑊 ) ) ) |
31 |
27 29 30
|
3imtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) ) ) ∧ 𝑇 ⊊ 𝑈 ) → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) |
32 |
31
|
exp42 |
⊢ ( 𝜑 → ( 𝑣 ∈ ( Base ‘ 𝑊 ) → ( ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) → ( 𝑇 ⊊ 𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) ) ) ) |
33 |
32
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( Base ‘ 𝑊 ) ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( LSpan ‘ 𝑊 ) ‘ { 𝑣 } ) ) = ( Base ‘ 𝑊 ) → ( 𝑇 ⊊ 𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) ) ) |
34 |
17 33
|
mpd |
⊢ ( 𝜑 → ( 𝑇 ⊊ 𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑊 ) ) ) ) |
35 |
12 34
|
mpid |
⊢ ( 𝜑 → ( 𝑇 ⊊ 𝑈 → 𝑈 = ( Base ‘ 𝑊 ) ) ) |
36 |
35
|
necon3ad |
⊢ ( 𝜑 → ( 𝑈 ≠ ( Base ‘ 𝑊 ) → ¬ 𝑇 ⊊ 𝑈 ) ) |
37 |
8 36
|
mpd |
⊢ ( 𝜑 → ¬ 𝑇 ⊊ 𝑈 ) |
38 |
|
df-pss |
⊢ ( 𝑇 ⊊ 𝑈 ↔ ( 𝑇 ⊆ 𝑈 ∧ 𝑇 ≠ 𝑈 ) ) |
39 |
38
|
simplbi2 |
⊢ ( 𝑇 ⊆ 𝑈 → ( 𝑇 ≠ 𝑈 → 𝑇 ⊊ 𝑈 ) ) |
40 |
39
|
necon1bd |
⊢ ( 𝑇 ⊆ 𝑈 → ( ¬ 𝑇 ⊊ 𝑈 → 𝑇 = 𝑈 ) ) |
41 |
37 40
|
syl5com |
⊢ ( 𝜑 → ( 𝑇 ⊆ 𝑈 → 𝑇 = 𝑈 ) ) |
42 |
|
eqimss |
⊢ ( 𝑇 = 𝑈 → 𝑇 ⊆ 𝑈 ) |
43 |
41 42
|
impbid1 |
⊢ ( 𝜑 → ( 𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈 ) ) |