| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcv.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lsmcv.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lsmcv.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lsmcv.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 5 |
|
lsmcv.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
lsmcv.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 7 |
|
lsmcv.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 8 |
|
lsmcv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 9 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 10 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑇 ⊊ 𝑈 ) |
| 11 |
|
pssss |
⊢ ( 𝑇 ⊊ 𝑈 → 𝑇 ⊆ 𝑈 ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑇 ⊆ 𝑈 ) |
| 13 |
|
pssnel |
⊢ ( 𝑇 ⊊ 𝑈 → ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) |
| 14 |
10 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) |
| 15 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 16 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → 𝑥 ∈ 𝑈 ) |
| 17 |
15 16
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → 𝑥 ∈ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 18 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 19 |
5 18
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 20 |
2
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 22 |
21 6
|
sseldd |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 23 |
1 2 3
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 24 |
19 8 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 25 |
21 24
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 26 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 27 |
26 4
|
lsmelval |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 28 |
22 25 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 29 |
28
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 31 |
17 30
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) |
| 32 |
|
simp1rr |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ¬ 𝑥 ∈ 𝑇 ) |
| 33 |
|
simp2l |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑦 ∈ 𝑇 ) |
| 34 |
|
oveq2 |
⊢ ( 𝑧 = ( 0g ‘ 𝑊 ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 35 |
34
|
eqeq2d |
⊢ ( 𝑧 = ( 0g ‘ 𝑊 ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ↔ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) ) |
| 36 |
35
|
biimpac |
⊢ ( ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∧ 𝑧 = ( 0g ‘ 𝑊 ) ) → 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 37 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑊 ∈ LMod ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑊 ∈ LMod ) |
| 39 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑇 ∈ 𝑆 ) |
| 40 |
39
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑇 ∈ 𝑆 ) |
| 41 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑦 ∈ 𝑇 ) |
| 42 |
1 2
|
lssel |
⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑉 ) |
| 43 |
40 41 42
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑦 ∈ 𝑉 ) |
| 44 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 45 |
1 26 44
|
lmod0vrid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 𝑦 ) |
| 46 |
38 43 45
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 𝑦 ) |
| 47 |
46
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ↔ 𝑥 = 𝑦 ) ) |
| 48 |
47
|
biimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) → 𝑥 = 𝑦 ) ) |
| 49 |
48
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) → 𝑥 = 𝑦 ) ) ) |
| 50 |
36 49
|
syl7 |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ( ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∧ 𝑧 = ( 0g ‘ 𝑊 ) ) → 𝑥 = 𝑦 ) ) ) |
| 51 |
50
|
exp4a |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑧 = ( 0g ‘ 𝑊 ) → 𝑥 = 𝑦 ) ) ) ) |
| 52 |
51
|
3imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑧 = ( 0g ‘ 𝑊 ) → 𝑥 = 𝑦 ) ) |
| 53 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑇 ↔ 𝑦 ∈ 𝑇 ) ) |
| 54 |
53
|
biimparc |
⊢ ( ( 𝑦 ∈ 𝑇 ∧ 𝑥 = 𝑦 ) → 𝑥 ∈ 𝑇 ) |
| 55 |
33 52 54
|
syl6an |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑧 = ( 0g ‘ 𝑊 ) → 𝑥 ∈ 𝑇 ) ) |
| 56 |
55
|
necon3bd |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ¬ 𝑥 ∈ 𝑇 → 𝑧 ≠ ( 0g ‘ 𝑊 ) ) ) |
| 57 |
32 56
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑧 ≠ ( 0g ‘ 𝑊 ) ) |
| 58 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑊 ∈ LVec ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → 𝑊 ∈ LVec ) |
| 60 |
59
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑊 ∈ LVec ) |
| 61 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 62 |
18 61
|
syl |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ Abel ) |
| 63 |
60 62
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑊 ∈ Abel ) |
| 64 |
|
simp1l1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝜑 ) |
| 65 |
64 6
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑇 ∈ 𝑆 ) |
| 66 |
65 33 42
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑦 ∈ 𝑉 ) |
| 67 |
60 18
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑊 ∈ LMod ) |
| 68 |
64 8
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑋 ∈ 𝑉 ) |
| 69 |
67 68 23
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 70 |
|
simp2r |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 71 |
1 2
|
lssel |
⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑧 ∈ 𝑉 ) |
| 72 |
69 70 71
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑧 ∈ 𝑉 ) |
| 73 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
| 74 |
1 26 73
|
ablpncan2 |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( -g ‘ 𝑊 ) 𝑦 ) = 𝑧 ) |
| 75 |
63 66 72 74
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( -g ‘ 𝑊 ) 𝑦 ) = 𝑧 ) |
| 76 |
64 7
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑈 ∈ 𝑆 ) |
| 77 |
|
simp3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) |
| 78 |
|
simp1rl |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑥 ∈ 𝑈 ) |
| 79 |
77 78
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑈 ) |
| 80 |
|
simp1l2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑇 ⊊ 𝑈 ) |
| 81 |
11
|
sselda |
⊢ ( ( 𝑇 ⊊ 𝑈 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑈 ) |
| 82 |
80 33 81
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑦 ∈ 𝑈 ) |
| 83 |
73 2
|
lssvsubcl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( -g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 84 |
67 76 79 82 83
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( -g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 85 |
75 84
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑧 ∈ 𝑈 ) |
| 86 |
60
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑊 ∈ LVec ) |
| 87 |
64
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝜑 ) |
| 88 |
87 8
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 89 |
|
simp12r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 90 |
|
simp2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ≠ ( 0g ‘ 𝑊 ) ) |
| 91 |
1 44 3 86 88 89 90
|
lspsneleq |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑧 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 92 |
86 18
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 93 |
87 7
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 94 |
|
simp3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ 𝑈 ) |
| 95 |
2 3 92 93 94
|
ellspsn5 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑈 ) |
| 96 |
91 95
|
eqsstrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 97 |
57 85 96
|
mpd3an23 |
⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 98 |
97
|
3exp |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) ) |
| 99 |
98
|
rexlimdvv |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |
| 100 |
31 99
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 101 |
14 100
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 102 |
21 7
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 103 |
4
|
lsmlub |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑇 ⊆ 𝑈 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ↔ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ 𝑈 ) ) |
| 104 |
22 25 102 103
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑇 ⊆ 𝑈 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ↔ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ 𝑈 ) ) |
| 105 |
104
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( ( 𝑇 ⊆ 𝑈 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ↔ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ 𝑈 ) ) |
| 106 |
12 101 105
|
mpbi2and |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ 𝑈 ) |
| 107 |
9 106
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑈 = ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |