| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spansncv.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
spansncv.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
spansncv.3 |
⊢ 𝐶 ∈ ℋ |
| 4 |
|
simpr |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) |
| 5 |
|
pssss |
⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐴 ⊆ 𝐵 ) |
| 7 |
|
pssnel |
⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
| 8 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) |
| 9 |
1 3
|
spansnji |
⊢ ( 𝐴 +ℋ ( span ‘ { 𝐶 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) |
| 10 |
9
|
eleq2i |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐶 } ) ) ↔ 𝑥 ∈ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) |
| 11 |
3
|
spansnchi |
⊢ ( span ‘ { 𝐶 } ) ∈ Cℋ |
| 12 |
1 11
|
chseli |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐶 } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐶 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 13 |
10 12
|
bitr3i |
⊢ ( 𝑥 ∈ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐶 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 14 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝑦 +ℎ 𝑧 ) ∈ 𝐵 ) ) |
| 15 |
14
|
biimpac |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → ( 𝑦 +ℎ 𝑧 ) ∈ 𝐵 ) |
| 16 |
5
|
sselda |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
| 17 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
| 18 |
|
shsubcl |
⊢ ( ( 𝐵 ∈ Sℋ ∧ ( 𝑦 +ℎ 𝑧 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) |
| 19 |
17 18
|
mp3an1 |
⊢ ( ( ( 𝑦 +ℎ 𝑧 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) |
| 20 |
15 16 19
|
syl2an |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) |
| 21 |
20
|
exp43 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( 𝐴 ⊊ 𝐵 → ( 𝑦 ∈ 𝐴 → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) ) ) ) |
| 22 |
21
|
com14 |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( 𝐴 ⊊ 𝐵 → ( 𝑥 ∈ 𝐵 → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) ) ) ) |
| 23 |
22
|
imp45 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) |
| 24 |
1
|
cheli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
| 25 |
11
|
cheli |
⊢ ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → 𝑧 ∈ ℋ ) |
| 26 |
|
hvpncan2 |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) = 𝑧 ) |
| 27 |
24 25 26
|
syl2an |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) = 𝑧 ) |
| 28 |
27
|
eleq1d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
| 29 |
23 28
|
imbitrid |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ) → 𝑧 ∈ 𝐵 ) ) |
| 30 |
29
|
imp |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ) ) → 𝑧 ∈ 𝐵 ) |
| 31 |
30
|
anandis |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ ( span ‘ { 𝐶 } ) ∧ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ) ) → 𝑧 ∈ 𝐵 ) |
| 32 |
31
|
exp45 |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) ) ) ) |
| 33 |
32
|
imp41 |
⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 34 |
33
|
adantrr |
⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐵 ) |
| 35 |
|
oveq2 |
⊢ ( 𝑧 = 0ℎ → ( 𝑦 +ℎ 𝑧 ) = ( 𝑦 +ℎ 0ℎ ) ) |
| 36 |
|
ax-hvaddid |
⊢ ( 𝑦 ∈ ℋ → ( 𝑦 +ℎ 0ℎ ) = 𝑦 ) |
| 37 |
24 36
|
syl |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑦 +ℎ 0ℎ ) = 𝑦 ) |
| 38 |
35 37
|
sylan9eqr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 0ℎ ) → ( 𝑦 +ℎ 𝑧 ) = 𝑦 ) |
| 39 |
38
|
eqeq2d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 0ℎ ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ 𝑥 = 𝑦 ) ) |
| 40 |
|
eleq1a |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 0ℎ ) → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 42 |
39 41
|
sylbid |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 0ℎ ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
| 43 |
42
|
impancom |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → ( 𝑧 = 0ℎ → 𝑥 ∈ 𝐴 ) ) |
| 44 |
43
|
necon3bd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → ( ¬ 𝑥 ∈ 𝐴 → 𝑧 ≠ 0ℎ ) ) |
| 45 |
44
|
imp |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝑧 ≠ 0ℎ ) |
| 46 |
|
spansnss |
⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) → ( span ‘ { 𝑧 } ) ⊆ 𝐵 ) |
| 47 |
17 46
|
mpan |
⊢ ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝑧 } ) ⊆ 𝐵 ) |
| 48 |
|
spansneleq |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝑧 ≠ 0ℎ ) → ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → ( span ‘ { 𝑧 } ) = ( span ‘ { 𝐶 } ) ) ) |
| 49 |
3 48
|
mpan |
⊢ ( 𝑧 ≠ 0ℎ → ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → ( span ‘ { 𝑧 } ) = ( span ‘ { 𝐶 } ) ) ) |
| 50 |
49
|
imp |
⊢ ( ( 𝑧 ≠ 0ℎ ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( span ‘ { 𝑧 } ) = ( span ‘ { 𝐶 } ) ) |
| 51 |
50
|
sseq1d |
⊢ ( ( 𝑧 ≠ 0ℎ ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( ( span ‘ { 𝑧 } ) ⊆ 𝐵 ↔ ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 52 |
47 51
|
imbitrid |
⊢ ( ( 𝑧 ≠ 0ℎ ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 53 |
52
|
ancoms |
⊢ ( ( 𝑧 ∈ ( span ‘ { 𝐶 } ) ∧ 𝑧 ≠ 0ℎ ) → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 54 |
45 53
|
sylan2 |
⊢ ( ( 𝑧 ∈ ( span ‘ { 𝐶 } ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 55 |
54
|
exp44 |
⊢ ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → ( 𝑦 ∈ 𝐴 → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) ) ) |
| 56 |
55
|
com12 |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) ) ) |
| 57 |
56
|
imp41 |
⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 58 |
57
|
adantrl |
⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 59 |
34 58
|
mpd |
⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) |
| 60 |
59
|
exp43 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) ) |
| 61 |
60
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐶 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) |
| 62 |
13 61
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) |
| 63 |
8 62
|
syl |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) |
| 64 |
63
|
imp |
⊢ ( ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 65 |
64
|
anandirs |
⊢ ( ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝐴 ⊊ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 66 |
65
|
expimpd |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝐴 ⊊ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 67 |
66
|
exlimdv |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝐴 ⊊ 𝐵 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 68 |
7 67
|
syl5 |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐴 ⊊ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 69 |
68
|
ex |
⊢ ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) → ( 𝐴 ⊊ 𝐵 → ( 𝐴 ⊊ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) |
| 70 |
69
|
pm2.43d |
⊢ ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) → ( 𝐴 ⊊ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 71 |
70
|
impcom |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) |
| 72 |
1 11 2
|
chlubii |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ⊆ 𝐵 ) |
| 73 |
6 71 72
|
syl2anc |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ⊆ 𝐵 ) |
| 74 |
4 73
|
eqssd |
⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐵 = ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) |