| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spansncv.1 |
|- A e. CH |
| 2 |
|
spansncv.2 |
|- B e. CH |
| 3 |
|
spansncv.3 |
|- C e. ~H |
| 4 |
|
simpr |
|- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> B C_ ( A vH ( span ` { C } ) ) ) |
| 5 |
|
pssss |
|- ( A C. B -> A C_ B ) |
| 6 |
5
|
adantr |
|- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> A C_ B ) |
| 7 |
|
pssnel |
|- ( A C. B -> E. x ( x e. B /\ -. x e. A ) ) |
| 8 |
|
ssel2 |
|- ( ( B C_ ( A vH ( span ` { C } ) ) /\ x e. B ) -> x e. ( A vH ( span ` { C } ) ) ) |
| 9 |
1 3
|
spansnji |
|- ( A +H ( span ` { C } ) ) = ( A vH ( span ` { C } ) ) |
| 10 |
9
|
eleq2i |
|- ( x e. ( A +H ( span ` { C } ) ) <-> x e. ( A vH ( span ` { C } ) ) ) |
| 11 |
3
|
spansnchi |
|- ( span ` { C } ) e. CH |
| 12 |
1 11
|
chseli |
|- ( x e. ( A +H ( span ` { C } ) ) <-> E. y e. A E. z e. ( span ` { C } ) x = ( y +h z ) ) |
| 13 |
10 12
|
bitr3i |
|- ( x e. ( A vH ( span ` { C } ) ) <-> E. y e. A E. z e. ( span ` { C } ) x = ( y +h z ) ) |
| 14 |
|
eleq1 |
|- ( x = ( y +h z ) -> ( x e. B <-> ( y +h z ) e. B ) ) |
| 15 |
14
|
biimpac |
|- ( ( x e. B /\ x = ( y +h z ) ) -> ( y +h z ) e. B ) |
| 16 |
5
|
sselda |
|- ( ( A C. B /\ y e. A ) -> y e. B ) |
| 17 |
2
|
chshii |
|- B e. SH |
| 18 |
|
shsubcl |
|- ( ( B e. SH /\ ( y +h z ) e. B /\ y e. B ) -> ( ( y +h z ) -h y ) e. B ) |
| 19 |
17 18
|
mp3an1 |
|- ( ( ( y +h z ) e. B /\ y e. B ) -> ( ( y +h z ) -h y ) e. B ) |
| 20 |
15 16 19
|
syl2an |
|- ( ( ( x e. B /\ x = ( y +h z ) ) /\ ( A C. B /\ y e. A ) ) -> ( ( y +h z ) -h y ) e. B ) |
| 21 |
20
|
exp43 |
|- ( x e. B -> ( x = ( y +h z ) -> ( A C. B -> ( y e. A -> ( ( y +h z ) -h y ) e. B ) ) ) ) |
| 22 |
21
|
com14 |
|- ( y e. A -> ( x = ( y +h z ) -> ( A C. B -> ( x e. B -> ( ( y +h z ) -h y ) e. B ) ) ) ) |
| 23 |
22
|
imp45 |
|- ( ( y e. A /\ ( x = ( y +h z ) /\ ( A C. B /\ x e. B ) ) ) -> ( ( y +h z ) -h y ) e. B ) |
| 24 |
1
|
cheli |
|- ( y e. A -> y e. ~H ) |
| 25 |
11
|
cheli |
|- ( z e. ( span ` { C } ) -> z e. ~H ) |
| 26 |
|
hvpncan2 |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( y +h z ) -h y ) = z ) |
| 27 |
24 25 26
|
syl2an |
|- ( ( y e. A /\ z e. ( span ` { C } ) ) -> ( ( y +h z ) -h y ) = z ) |
| 28 |
27
|
eleq1d |
|- ( ( y e. A /\ z e. ( span ` { C } ) ) -> ( ( ( y +h z ) -h y ) e. B <-> z e. B ) ) |
| 29 |
23 28
|
imbitrid |
|- ( ( y e. A /\ z e. ( span ` { C } ) ) -> ( ( y e. A /\ ( x = ( y +h z ) /\ ( A C. B /\ x e. B ) ) ) -> z e. B ) ) |
| 30 |
29
|
imp |
|- ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ ( y e. A /\ ( x = ( y +h z ) /\ ( A C. B /\ x e. B ) ) ) ) -> z e. B ) |
| 31 |
30
|
anandis |
|- ( ( y e. A /\ ( z e. ( span ` { C } ) /\ ( x = ( y +h z ) /\ ( A C. B /\ x e. B ) ) ) ) -> z e. B ) |
| 32 |
31
|
exp45 |
|- ( y e. A -> ( z e. ( span ` { C } ) -> ( x = ( y +h z ) -> ( ( A C. B /\ x e. B ) -> z e. B ) ) ) ) |
| 33 |
32
|
imp41 |
|- ( ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ x = ( y +h z ) ) /\ ( A C. B /\ x e. B ) ) -> z e. B ) |
| 34 |
33
|
adantrr |
|- ( ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ x = ( y +h z ) ) /\ ( ( A C. B /\ x e. B ) /\ -. x e. A ) ) -> z e. B ) |
| 35 |
|
oveq2 |
|- ( z = 0h -> ( y +h z ) = ( y +h 0h ) ) |
| 36 |
|
ax-hvaddid |
|- ( y e. ~H -> ( y +h 0h ) = y ) |
| 37 |
24 36
|
syl |
|- ( y e. A -> ( y +h 0h ) = y ) |
| 38 |
35 37
|
sylan9eqr |
|- ( ( y e. A /\ z = 0h ) -> ( y +h z ) = y ) |
| 39 |
38
|
eqeq2d |
|- ( ( y e. A /\ z = 0h ) -> ( x = ( y +h z ) <-> x = y ) ) |
| 40 |
|
eleq1a |
|- ( y e. A -> ( x = y -> x e. A ) ) |
| 41 |
40
|
adantr |
|- ( ( y e. A /\ z = 0h ) -> ( x = y -> x e. A ) ) |
| 42 |
39 41
|
sylbid |
|- ( ( y e. A /\ z = 0h ) -> ( x = ( y +h z ) -> x e. A ) ) |
| 43 |
42
|
impancom |
|- ( ( y e. A /\ x = ( y +h z ) ) -> ( z = 0h -> x e. A ) ) |
| 44 |
43
|
necon3bd |
|- ( ( y e. A /\ x = ( y +h z ) ) -> ( -. x e. A -> z =/= 0h ) ) |
| 45 |
44
|
imp |
|- ( ( ( y e. A /\ x = ( y +h z ) ) /\ -. x e. A ) -> z =/= 0h ) |
| 46 |
|
spansnss |
|- ( ( B e. SH /\ z e. B ) -> ( span ` { z } ) C_ B ) |
| 47 |
17 46
|
mpan |
|- ( z e. B -> ( span ` { z } ) C_ B ) |
| 48 |
|
spansneleq |
|- ( ( C e. ~H /\ z =/= 0h ) -> ( z e. ( span ` { C } ) -> ( span ` { z } ) = ( span ` { C } ) ) ) |
| 49 |
3 48
|
mpan |
|- ( z =/= 0h -> ( z e. ( span ` { C } ) -> ( span ` { z } ) = ( span ` { C } ) ) ) |
| 50 |
49
|
imp |
|- ( ( z =/= 0h /\ z e. ( span ` { C } ) ) -> ( span ` { z } ) = ( span ` { C } ) ) |
| 51 |
50
|
sseq1d |
|- ( ( z =/= 0h /\ z e. ( span ` { C } ) ) -> ( ( span ` { z } ) C_ B <-> ( span ` { C } ) C_ B ) ) |
| 52 |
47 51
|
imbitrid |
|- ( ( z =/= 0h /\ z e. ( span ` { C } ) ) -> ( z e. B -> ( span ` { C } ) C_ B ) ) |
| 53 |
52
|
ancoms |
|- ( ( z e. ( span ` { C } ) /\ z =/= 0h ) -> ( z e. B -> ( span ` { C } ) C_ B ) ) |
| 54 |
45 53
|
sylan2 |
|- ( ( z e. ( span ` { C } ) /\ ( ( y e. A /\ x = ( y +h z ) ) /\ -. x e. A ) ) -> ( z e. B -> ( span ` { C } ) C_ B ) ) |
| 55 |
54
|
exp44 |
|- ( z e. ( span ` { C } ) -> ( y e. A -> ( x = ( y +h z ) -> ( -. x e. A -> ( z e. B -> ( span ` { C } ) C_ B ) ) ) ) ) |
| 56 |
55
|
com12 |
|- ( y e. A -> ( z e. ( span ` { C } ) -> ( x = ( y +h z ) -> ( -. x e. A -> ( z e. B -> ( span ` { C } ) C_ B ) ) ) ) ) |
| 57 |
56
|
imp41 |
|- ( ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ x = ( y +h z ) ) /\ -. x e. A ) -> ( z e. B -> ( span ` { C } ) C_ B ) ) |
| 58 |
57
|
adantrl |
|- ( ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ x = ( y +h z ) ) /\ ( ( A C. B /\ x e. B ) /\ -. x e. A ) ) -> ( z e. B -> ( span ` { C } ) C_ B ) ) |
| 59 |
34 58
|
mpd |
|- ( ( ( ( y e. A /\ z e. ( span ` { C } ) ) /\ x = ( y +h z ) ) /\ ( ( A C. B /\ x e. B ) /\ -. x e. A ) ) -> ( span ` { C } ) C_ B ) |
| 60 |
59
|
exp43 |
|- ( ( y e. A /\ z e. ( span ` { C } ) ) -> ( x = ( y +h z ) -> ( ( A C. B /\ x e. B ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) ) ) |
| 61 |
60
|
rexlimivv |
|- ( E. y e. A E. z e. ( span ` { C } ) x = ( y +h z ) -> ( ( A C. B /\ x e. B ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) ) |
| 62 |
13 61
|
sylbi |
|- ( x e. ( A vH ( span ` { C } ) ) -> ( ( A C. B /\ x e. B ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) ) |
| 63 |
8 62
|
syl |
|- ( ( B C_ ( A vH ( span ` { C } ) ) /\ x e. B ) -> ( ( A C. B /\ x e. B ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) ) |
| 64 |
63
|
imp |
|- ( ( ( B C_ ( A vH ( span ` { C } ) ) /\ x e. B ) /\ ( A C. B /\ x e. B ) ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) |
| 65 |
64
|
anandirs |
|- ( ( ( B C_ ( A vH ( span ` { C } ) ) /\ A C. B ) /\ x e. B ) -> ( -. x e. A -> ( span ` { C } ) C_ B ) ) |
| 66 |
65
|
expimpd |
|- ( ( B C_ ( A vH ( span ` { C } ) ) /\ A C. B ) -> ( ( x e. B /\ -. x e. A ) -> ( span ` { C } ) C_ B ) ) |
| 67 |
66
|
exlimdv |
|- ( ( B C_ ( A vH ( span ` { C } ) ) /\ A C. B ) -> ( E. x ( x e. B /\ -. x e. A ) -> ( span ` { C } ) C_ B ) ) |
| 68 |
7 67
|
syl5 |
|- ( ( B C_ ( A vH ( span ` { C } ) ) /\ A C. B ) -> ( A C. B -> ( span ` { C } ) C_ B ) ) |
| 69 |
68
|
ex |
|- ( B C_ ( A vH ( span ` { C } ) ) -> ( A C. B -> ( A C. B -> ( span ` { C } ) C_ B ) ) ) |
| 70 |
69
|
pm2.43d |
|- ( B C_ ( A vH ( span ` { C } ) ) -> ( A C. B -> ( span ` { C } ) C_ B ) ) |
| 71 |
70
|
impcom |
|- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> ( span ` { C } ) C_ B ) |
| 72 |
1 11 2
|
chlubii |
|- ( ( A C_ B /\ ( span ` { C } ) C_ B ) -> ( A vH ( span ` { C } ) ) C_ B ) |
| 73 |
6 71 72
|
syl2anc |
|- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> ( A vH ( span ` { C } ) ) C_ B ) |
| 74 |
4 73
|
eqssd |
|- ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> B = ( A vH ( span ` { C } ) ) ) |