Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvpncan2 | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h A ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvcom | |- ( ( B e. ~H /\ A e. ~H ) -> ( B +h A ) = ( A +h B ) ) |
|
| 2 | 1 | oveq1d | |- ( ( B e. ~H /\ A e. ~H ) -> ( ( B +h A ) -h A ) = ( ( A +h B ) -h A ) ) |
| 3 | hvpncan | |- ( ( B e. ~H /\ A e. ~H ) -> ( ( B +h A ) -h A ) = B ) |
|
| 4 | 2 3 | eqtr3d | |- ( ( B e. ~H /\ A e. ~H ) -> ( ( A +h B ) -h A ) = B ) |
| 5 | 4 | ancoms | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) -h A ) = B ) |