Metamath Proof Explorer


Theorem hvpncan2

Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion hvpncan2 ABA+B-A=B

Proof

Step Hyp Ref Expression
1 ax-hvcom BAB+A=A+B
2 1 oveq1d BAB+A-A=A+B-A
3 hvpncan BAB+A-A=B
4 2 3 eqtr3d BAA+B-A=B
5 4 ancoms ABA+B-A=B