Metamath Proof Explorer


Theorem spansncvi

Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of Kalmbach p. 153. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses spansncv.1 A C
spansncv.2 B C
spansncv.3 C
Assertion spansncvi A B B A span C B = A span C

Proof

Step Hyp Ref Expression
1 spansncv.1 A C
2 spansncv.2 B C
3 spansncv.3 C
4 simpr A B B A span C B A span C
5 pssss A B A B
6 5 adantr A B B A span C A B
7 pssnel A B x x B ¬ x A
8 ssel2 B A span C x B x A span C
9 1 3 spansnji A + span C = A span C
10 9 eleq2i x A + span C x A span C
11 3 spansnchi span C C
12 1 11 chseli x A + span C y A z span C x = y + z
13 10 12 bitr3i x A span C y A z span C x = y + z
14 eleq1 x = y + z x B y + z B
15 14 biimpac x B x = y + z y + z B
16 5 sselda A B y A y B
17 2 chshii B S
18 shsubcl B S y + z B y B y + z - y B
19 17 18 mp3an1 y + z B y B y + z - y B
20 15 16 19 syl2an x B x = y + z A B y A y + z - y B
21 20 exp43 x B x = y + z A B y A y + z - y B
22 21 com14 y A x = y + z A B x B y + z - y B
23 22 imp45 y A x = y + z A B x B y + z - y B
24 1 cheli y A y
25 11 cheli z span C z
26 hvpncan2 y z y + z - y = z
27 24 25 26 syl2an y A z span C y + z - y = z
28 27 eleq1d y A z span C y + z - y B z B
29 23 28 syl5ib y A z span C y A x = y + z A B x B z B
30 29 imp y A z span C y A x = y + z A B x B z B
31 30 anandis y A z span C x = y + z A B x B z B
32 31 exp45 y A z span C x = y + z A B x B z B
33 32 imp41 y A z span C x = y + z A B x B z B
34 33 adantrr y A z span C x = y + z A B x B ¬ x A z B
35 oveq2 z = 0 y + z = y + 0
36 ax-hvaddid y y + 0 = y
37 24 36 syl y A y + 0 = y
38 35 37 sylan9eqr y A z = 0 y + z = y
39 38 eqeq2d y A z = 0 x = y + z x = y
40 eleq1a y A x = y x A
41 40 adantr y A z = 0 x = y x A
42 39 41 sylbid y A z = 0 x = y + z x A
43 42 impancom y A x = y + z z = 0 x A
44 43 necon3bd y A x = y + z ¬ x A z 0
45 44 imp y A x = y + z ¬ x A z 0
46 spansnss B S z B span z B
47 17 46 mpan z B span z B
48 spansneleq C z 0 z span C span z = span C
49 3 48 mpan z 0 z span C span z = span C
50 49 imp z 0 z span C span z = span C
51 50 sseq1d z 0 z span C span z B span C B
52 47 51 syl5ib z 0 z span C z B span C B
53 52 ancoms z span C z 0 z B span C B
54 45 53 sylan2 z span C y A x = y + z ¬ x A z B span C B
55 54 exp44 z span C y A x = y + z ¬ x A z B span C B
56 55 com12 y A z span C x = y + z ¬ x A z B span C B
57 56 imp41 y A z span C x = y + z ¬ x A z B span C B
58 57 adantrl y A z span C x = y + z A B x B ¬ x A z B span C B
59 34 58 mpd y A z span C x = y + z A B x B ¬ x A span C B
60 59 exp43 y A z span C x = y + z A B x B ¬ x A span C B
61 60 rexlimivv y A z span C x = y + z A B x B ¬ x A span C B
62 13 61 sylbi x A span C A B x B ¬ x A span C B
63 8 62 syl B A span C x B A B x B ¬ x A span C B
64 63 imp B A span C x B A B x B ¬ x A span C B
65 64 anandirs B A span C A B x B ¬ x A span C B
66 65 expimpd B A span C A B x B ¬ x A span C B
67 66 exlimdv B A span C A B x x B ¬ x A span C B
68 7 67 syl5 B A span C A B A B span C B
69 68 ex B A span C A B A B span C B
70 69 pm2.43d B A span C A B span C B
71 70 impcom A B B A span C span C B
72 1 11 2 chlubii A B span C B A span C B
73 6 71 72 syl2anc A B B A span C A span C B
74 4 73 eqssd A B B A span C B = A span C