| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spansncv.1 |
|
| 2 |
|
spansncv.2 |
|
| 3 |
|
spansncv.3 |
|
| 4 |
|
simpr |
|
| 5 |
|
pssss |
|
| 6 |
5
|
adantr |
|
| 7 |
|
pssnel |
|
| 8 |
|
ssel2 |
|
| 9 |
1 3
|
spansnji |
|
| 10 |
9
|
eleq2i |
|
| 11 |
3
|
spansnchi |
|
| 12 |
1 11
|
chseli |
|
| 13 |
10 12
|
bitr3i |
|
| 14 |
|
eleq1 |
|
| 15 |
14
|
biimpac |
|
| 16 |
5
|
sselda |
|
| 17 |
2
|
chshii |
|
| 18 |
|
shsubcl |
|
| 19 |
17 18
|
mp3an1 |
|
| 20 |
15 16 19
|
syl2an |
|
| 21 |
20
|
exp43 |
|
| 22 |
21
|
com14 |
|
| 23 |
22
|
imp45 |
|
| 24 |
1
|
cheli |
|
| 25 |
11
|
cheli |
|
| 26 |
|
hvpncan2 |
|
| 27 |
24 25 26
|
syl2an |
|
| 28 |
27
|
eleq1d |
|
| 29 |
23 28
|
imbitrid |
|
| 30 |
29
|
imp |
|
| 31 |
30
|
anandis |
|
| 32 |
31
|
exp45 |
|
| 33 |
32
|
imp41 |
|
| 34 |
33
|
adantrr |
|
| 35 |
|
oveq2 |
|
| 36 |
|
ax-hvaddid |
|
| 37 |
24 36
|
syl |
|
| 38 |
35 37
|
sylan9eqr |
|
| 39 |
38
|
eqeq2d |
|
| 40 |
|
eleq1a |
|
| 41 |
40
|
adantr |
|
| 42 |
39 41
|
sylbid |
|
| 43 |
42
|
impancom |
|
| 44 |
43
|
necon3bd |
|
| 45 |
44
|
imp |
|
| 46 |
|
spansnss |
|
| 47 |
17 46
|
mpan |
|
| 48 |
|
spansneleq |
|
| 49 |
3 48
|
mpan |
|
| 50 |
49
|
imp |
|
| 51 |
50
|
sseq1d |
|
| 52 |
47 51
|
imbitrid |
|
| 53 |
52
|
ancoms |
|
| 54 |
45 53
|
sylan2 |
|
| 55 |
54
|
exp44 |
|
| 56 |
55
|
com12 |
|
| 57 |
56
|
imp41 |
|
| 58 |
57
|
adantrl |
|
| 59 |
34 58
|
mpd |
|
| 60 |
59
|
exp43 |
|
| 61 |
60
|
rexlimivv |
|
| 62 |
13 61
|
sylbi |
|
| 63 |
8 62
|
syl |
|
| 64 |
63
|
imp |
|
| 65 |
64
|
anandirs |
|
| 66 |
65
|
expimpd |
|
| 67 |
66
|
exlimdv |
|
| 68 |
7 67
|
syl5 |
|
| 69 |
68
|
ex |
|
| 70 |
69
|
pm2.43d |
|
| 71 |
70
|
impcom |
|
| 72 |
1 11 2
|
chlubii |
|
| 73 |
6 71 72
|
syl2anc |
|
| 74 |
4 73
|
eqssd |
|