Step |
Hyp |
Ref |
Expression |
1 |
|
spansncv.1 |
|
2 |
|
spansncv.2 |
|
3 |
|
spansncv.3 |
|
4 |
|
simpr |
|
5 |
|
pssss |
|
6 |
5
|
adantr |
|
7 |
|
pssnel |
|
8 |
|
ssel2 |
|
9 |
1 3
|
spansnji |
|
10 |
9
|
eleq2i |
|
11 |
3
|
spansnchi |
|
12 |
1 11
|
chseli |
|
13 |
10 12
|
bitr3i |
|
14 |
|
eleq1 |
|
15 |
14
|
biimpac |
|
16 |
5
|
sselda |
|
17 |
2
|
chshii |
|
18 |
|
shsubcl |
|
19 |
17 18
|
mp3an1 |
|
20 |
15 16 19
|
syl2an |
|
21 |
20
|
exp43 |
|
22 |
21
|
com14 |
|
23 |
22
|
imp45 |
|
24 |
1
|
cheli |
|
25 |
11
|
cheli |
|
26 |
|
hvpncan2 |
|
27 |
24 25 26
|
syl2an |
|
28 |
27
|
eleq1d |
|
29 |
23 28
|
syl5ib |
|
30 |
29
|
imp |
|
31 |
30
|
anandis |
|
32 |
31
|
exp45 |
|
33 |
32
|
imp41 |
|
34 |
33
|
adantrr |
|
35 |
|
oveq2 |
|
36 |
|
ax-hvaddid |
|
37 |
24 36
|
syl |
|
38 |
35 37
|
sylan9eqr |
|
39 |
38
|
eqeq2d |
|
40 |
|
eleq1a |
|
41 |
40
|
adantr |
|
42 |
39 41
|
sylbid |
|
43 |
42
|
impancom |
|
44 |
43
|
necon3bd |
|
45 |
44
|
imp |
|
46 |
|
spansnss |
|
47 |
17 46
|
mpan |
|
48 |
|
spansneleq |
|
49 |
3 48
|
mpan |
|
50 |
49
|
imp |
|
51 |
50
|
sseq1d |
|
52 |
47 51
|
syl5ib |
|
53 |
52
|
ancoms |
|
54 |
45 53
|
sylan2 |
|
55 |
54
|
exp44 |
|
56 |
55
|
com12 |
|
57 |
56
|
imp41 |
|
58 |
57
|
adantrl |
|
59 |
34 58
|
mpd |
|
60 |
59
|
exp43 |
|
61 |
60
|
rexlimivv |
|
62 |
13 61
|
sylbi |
|
63 |
8 62
|
syl |
|
64 |
63
|
imp |
|
65 |
64
|
anandirs |
|
66 |
65
|
expimpd |
|
67 |
66
|
exlimdv |
|
68 |
7 67
|
syl5 |
|
69 |
68
|
ex |
|
70 |
69
|
pm2.43d |
|
71 |
70
|
impcom |
|
72 |
1 11 2
|
chlubii |
|
73 |
6 71 72
|
syl2anc |
|
74 |
4 73
|
eqssd |
|