Metamath Proof Explorer


Theorem spansnji

Description: The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Proof suggested by Eric Schechter 1-Jun-2004.) (Contributed by NM, 1-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses spansnj.1 A C
spansnj.2 B
Assertion spansnji A + span B = A span B

Proof

Step Hyp Ref Expression
1 spansnj.1 A C
2 spansnj.2 B
3 1 chshii A S
4 2 spansnchi span B C
5 4 chshii span B S
6 3 5 shjshsi A span B = A + span B
7 1 chssii A
8 1 choccli A C
9 8 2 pjhclii proj A B
10 snssi proj A B proj A B
11 9 10 ax-mp proj A B
12 7 11 spanuni span A proj A B = span A + span proj A B
13 spanid A S span A = A
14 3 13 ax-mp span A = A
15 14 oveq1i span A + span proj A B = A + span proj A B
16 7 2 spansnpji A span proj A B
17 9 spansnchi span proj A B C
18 1 17 osumi A span proj A B A + span proj A B = A span proj A B
19 16 18 ax-mp A + span proj A B = A span proj A B
20 12 15 19 3eqtrri A span proj A B = span A proj A B
21 1 2 spanunsni span A B = span A proj A B
22 20 21 eqtr4i A span proj A B = span A B
23 snssi B B
24 2 23 ax-mp B
25 7 24 spanuni span A B = span A + span B
26 14 oveq1i span A + span B = A + span B
27 22 25 26 3eqtrri A + span B = A span proj A B
28 1 17 chjcli A span proj A B C
29 27 28 eqeltri A + span B C
30 29 ococi A + span B = A + span B
31 6 30 eqtr2i A + span B = A span B