Metamath Proof Explorer


Theorem spansnpji

Description: A subset of Hilbert space is orthogonal to the span of the singleton of a projection onto its orthocomplement. (Contributed by NM, 4-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses spansnpj.1 A
spansnpj.2 B
Assertion spansnpji AspanprojAB

Proof

Step Hyp Ref Expression
1 spansnpj.1 A
2 spansnpj.2 B
3 ococss AAA
4 1 3 ax-mp AA
5 occl AAC
6 1 5 ax-mp AC
7 6 chssii A
8 6 2 pjclii projABA
9 snssi projABAprojABA
10 8 9 ax-mp projABA
11 spanss AprojABAspanprojABspanA
12 7 10 11 mp2an spanprojABspanA
13 6 chshii AS
14 spanid ASspanA=A
15 13 14 ax-mp spanA=A
16 12 15 sseqtri spanprojABA
17 6 2 pjhclii projAB
18 17 spansnchi spanprojABC
19 18 6 chsscon3i spanprojABAAspanprojAB
20 16 19 mpbi AspanprojAB
21 4 20 sstri AspanprojAB