Description: A subset of Hilbert space is orthogonal to the span of the singleton of a projection onto its orthocomplement. (Contributed by NM, 4-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spansnpj.1 | |
|
spansnpj.2 | |
||
Assertion | spansnpji | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansnpj.1 | |
|
2 | spansnpj.2 | |
|
3 | ococss | |
|
4 | 1 3 | ax-mp | |
5 | occl | |
|
6 | 1 5 | ax-mp | |
7 | 6 | chssii | |
8 | 6 2 | pjclii | |
9 | snssi | |
|
10 | 8 9 | ax-mp | |
11 | spanss | |
|
12 | 7 10 11 | mp2an | |
13 | 6 | chshii | |
14 | spanid | |
|
15 | 13 14 | ax-mp | |
16 | 12 15 | sseqtri | |
17 | 6 2 | pjhclii | |
18 | 17 | spansnchi | |
19 | 18 6 | chsscon3i | |
20 | 16 19 | mpbi | |
21 | 4 20 | sstri | |