| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spansnpj.1 |
⊢ 𝐴 ⊆ ℋ |
| 2 |
|
spansnpj.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
|
ococss |
⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 4 |
1 3
|
ax-mp |
⊢ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
| 5 |
|
occl |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| 6 |
1 5
|
ax-mp |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 7 |
6
|
chssii |
⊢ ( ⊥ ‘ 𝐴 ) ⊆ ℋ |
| 8 |
6 2
|
pjclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐴 ) |
| 9 |
|
snssi |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐴 ) → { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 10 |
8 9
|
ax-mp |
⊢ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ( ⊥ ‘ 𝐴 ) |
| 11 |
|
spanss |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ ∧ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ( ⊥ ‘ 𝐴 ) ) → ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ⊆ ( span ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 12 |
7 10 11
|
mp2an |
⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ⊆ ( span ‘ ( ⊥ ‘ 𝐴 ) ) |
| 13 |
6
|
chshii |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Sℋ |
| 14 |
|
spanid |
⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → ( span ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ 𝐴 ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( span ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ 𝐴 ) |
| 16 |
12 15
|
sseqtri |
⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ⊆ ( ⊥ ‘ 𝐴 ) |
| 17 |
6 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ |
| 18 |
17
|
spansnchi |
⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ Cℋ |
| 19 |
18 6
|
chsscon3i |
⊢ ( ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ⊆ ( ⊥ ‘ 𝐴 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 20 |
16 19
|
mpbi |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 21 |
4 20
|
sstri |
⊢ 𝐴 ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |