Metamath Proof Explorer


Theorem chsscon3i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 𝐴C
chjcl.2 𝐵C
Assertion chsscon3i ( 𝐴𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ch0le.1 𝐴C
2 chjcl.2 𝐵C
3 1 chssii 𝐴 ⊆ ℋ
4 2 chssii 𝐵 ⊆ ℋ
5 occon ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) )
6 3 4 5 mp2an ( 𝐴𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) )
7 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
8 7 chssii ( ⊥ ‘ 𝐵 ) ⊆ ℋ
9 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
10 9 chssii ( ⊥ ‘ 𝐴 ) ⊆ ℋ
11 occon ( ( ( ⊥ ‘ 𝐵 ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
12 8 10 11 mp2an ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) )
13 1 pjococi ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴
14 2 pjococi ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵
15 12 13 14 3sstr3g ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴𝐵 )
16 6 15 impbii ( 𝐴𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) )