| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spanunsn.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
spanunsn.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
| 4 |
|
snssi |
⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) |
| 5 |
|
spancl |
⊢ ( { 𝐵 } ⊆ ℋ → ( span ‘ { 𝐵 } ) ∈ Sℋ ) |
| 6 |
2 4 5
|
mp2b |
⊢ ( span ‘ { 𝐵 } ) ∈ Sℋ |
| 7 |
3 6
|
shseli |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐵 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 8 |
2
|
elspansni |
⊢ ( 𝑧 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝐵 ) ) |
| 9 |
1 2
|
pjclii |
⊢ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝐴 |
| 10 |
|
shmulcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝐴 ) → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
| 11 |
3 9 10
|
mp3an13 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
| 12 |
|
shaddcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ) |
| 13 |
11 12
|
syl3an3 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ) |
| 14 |
3 13
|
mp3an1 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ) |
| 15 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 16 |
15 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ |
| 17 |
|
spansnmul |
⊢ ( ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 18 |
16 17
|
mpan |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 20 |
1 2
|
pjpji |
⊢ 𝐵 = ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) |
| 21 |
20
|
oveq2i |
⊢ ( 𝑤 ·ℎ 𝐵 ) = ( 𝑤 ·ℎ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) |
| 22 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ |
| 23 |
|
ax-hvdistr1 |
⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝑤 ·ℎ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 24 |
22 16 23
|
mp3an23 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 25 |
21 24
|
eqtrid |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ 𝐵 ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ 𝐵 ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 28 |
1
|
cheli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
| 29 |
|
hvmulcl |
⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) |
| 30 |
22 29
|
mpan2 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) |
| 31 |
|
hvmulcl |
⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) |
| 32 |
16 31
|
mpan2 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) |
| 33 |
30 32
|
jca |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
| 34 |
|
ax-hvass |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) → ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 35 |
34
|
3expb |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) → ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 36 |
28 33 35
|
syl2an |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 37 |
27 36
|
eqtr4d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 38 |
|
rspceov |
⊢ ( ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∧ ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
| 39 |
14 19 37 38
|
syl3anc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
| 40 |
|
snssi |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ → { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ ) |
| 41 |
|
spancl |
⊢ ( { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ → ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ Sℋ ) |
| 42 |
16 40 41
|
mp2b |
⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ Sℋ |
| 43 |
3 42
|
shseli |
⊢ ( ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
| 44 |
39 43
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 45 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) |
| 46 |
45
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) ) |
| 47 |
46
|
biimpa |
⊢ ( ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) |
| 48 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ↔ ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) |
| 49 |
48
|
biimparc |
⊢ ( ( ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ∧ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 50 |
44 47 49
|
syl2an |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) ∧ ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 51 |
50
|
exp43 |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑤 ∈ ℂ → ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) ) ) |
| 52 |
51
|
rexlimdv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) ) |
| 53 |
8 52
|
biimtrid |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ ( span ‘ { 𝐵 } ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) ) |
| 54 |
53
|
rexlimdv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑧 ∈ ( span ‘ { 𝐵 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) |
| 55 |
54
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐵 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 56 |
7 55
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 57 |
3 42
|
shseli |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 58 |
16
|
elspansni |
⊢ ( 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) |
| 59 |
|
negcl |
⊢ ( 𝑤 ∈ ℂ → - 𝑤 ∈ ℂ ) |
| 60 |
|
shmulcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ - 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝐴 ) → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
| 61 |
3 9 60
|
mp3an13 |
⊢ ( - 𝑤 ∈ ℂ → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
| 62 |
59 61
|
syl |
⊢ ( 𝑤 ∈ ℂ → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
| 63 |
|
shaddcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
| 64 |
62 63
|
syl3an2 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑤 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
| 65 |
3 64
|
mp3an1 |
⊢ ( ( 𝑤 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
| 66 |
65
|
ancoms |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
| 67 |
|
spansnmul |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) |
| 68 |
2 67
|
mpan |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) |
| 70 |
|
hvm1neg |
⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ) → ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 71 |
22 70
|
mpan2 |
⊢ ( 𝑤 ∈ ℂ → ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 72 |
71
|
oveq2d |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
| 73 |
|
hvnegid |
⊢ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) = 0ℎ ) |
| 74 |
30 73
|
syl |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) = 0ℎ ) |
| 75 |
|
hvmulcl |
⊢ ( ( - 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ) → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) |
| 76 |
59 22 75
|
sylancl |
⊢ ( 𝑤 ∈ ℂ → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) |
| 77 |
|
ax-hvcom |
⊢ ( ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
| 78 |
30 76 77
|
syl2anc |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
| 79 |
72 74 78
|
3eqtr3d |
⊢ ( 𝑤 ∈ ℂ → 0ℎ = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → 0ℎ = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
| 81 |
80
|
oveq1d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 0ℎ +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 82 |
|
hvaddcl |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ℋ ) |
| 83 |
28 32 82
|
syl2an |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ℋ ) |
| 84 |
|
hvaddlid |
⊢ ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ℋ → ( 0ℎ +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 85 |
83 84
|
syl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 0ℎ +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 86 |
76 30
|
jca |
⊢ ( 𝑤 ∈ ℂ → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
| 87 |
86
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
| 88 |
28 32
|
anim12i |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
| 89 |
|
hvadd4 |
⊢ ( ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) ∧ ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) → ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 90 |
87 88 89
|
syl2anc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 91 |
81 85 90
|
3eqtr3d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 92 |
26
|
oveq2d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 93 |
91 92
|
eqtr4d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) |
| 94 |
|
rspceov |
⊢ ( ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ∧ ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ∧ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { 𝐵 } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
| 95 |
66 69 93 94
|
syl3anc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { 𝐵 } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
| 96 |
3 6
|
shseli |
⊢ ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { 𝐵 } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
| 97 |
95 96
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 98 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 99 |
98
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
| 100 |
99
|
biimpa |
⊢ ( ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
| 101 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) |
| 102 |
101
|
biimparc |
⊢ ( ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 103 |
97 100 102
|
syl2an |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) ∧ ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 104 |
103
|
exp43 |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑤 ∈ ℂ → ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
| 105 |
104
|
rexlimdv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) ) |
| 106 |
58 105
|
biimtrid |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) ) |
| 107 |
106
|
rexlimdv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) |
| 108 |
107
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 109 |
57 108
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
| 110 |
56 109
|
impbii |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 111 |
110
|
eqriv |
⊢ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 112 |
1
|
chssii |
⊢ 𝐴 ⊆ ℋ |
| 113 |
2 4
|
ax-mp |
⊢ { 𝐵 } ⊆ ℋ |
| 114 |
112 113
|
spanuni |
⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { 𝐵 } ) ) |
| 115 |
|
spanid |
⊢ ( 𝐴 ∈ Sℋ → ( span ‘ 𝐴 ) = 𝐴 ) |
| 116 |
3 115
|
ax-mp |
⊢ ( span ‘ 𝐴 ) = 𝐴 |
| 117 |
116
|
oveq1i |
⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) |
| 118 |
114 117
|
eqtri |
⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) |
| 119 |
16 40
|
ax-mp |
⊢ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ |
| 120 |
112 119
|
spanuni |
⊢ ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 121 |
116
|
oveq1i |
⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 122 |
120 121
|
eqtri |
⊢ ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 123 |
111 118 122
|
3eqtr4i |
⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |