| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spanval |
⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) = ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 2 |
|
ssrab2 |
⊢ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ Sℋ |
| 3 |
|
helsh |
⊢ ℋ ∈ Sℋ |
| 4 |
|
sseq2 |
⊢ ( 𝑥 = ℋ → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ ) ) |
| 5 |
4
|
rspcev |
⊢ ( ( ℋ ∈ Sℋ ∧ 𝐴 ⊆ ℋ ) → ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ) |
| 6 |
3 5
|
mpan |
⊢ ( 𝐴 ⊆ ℋ → ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ) |
| 7 |
|
rabn0 |
⊢ ( { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ↔ ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ) |
| 8 |
6 7
|
sylibr |
⊢ ( 𝐴 ⊆ ℋ → { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ) |
| 9 |
|
shintcl |
⊢ ( ( { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ Sℋ ∧ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ) → ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ∈ Sℋ ) |
| 10 |
2 8 9
|
sylancr |
⊢ ( 𝐴 ⊆ ℋ → ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ∈ Sℋ ) |
| 11 |
1 10
|
eqeltrd |
⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) ∈ Sℋ ) |