Metamath Proof Explorer


Theorem spansnj

Description: The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansnj A C B A + span B = A span B

Proof

Step Hyp Ref Expression
1 oveq1 A = if A C A A + span B = if A C A + span B
2 oveq1 A = if A C A A span B = if A C A span B
3 1 2 eqeq12d A = if A C A A + span B = A span B if A C A + span B = if A C A span B
4 sneq B = if B B 0 B = if B B 0
5 4 fveq2d B = if B B 0 span B = span if B B 0
6 5 oveq2d B = if B B 0 if A C A + span B = if A C A + span if B B 0
7 5 oveq2d B = if B B 0 if A C A span B = if A C A span if B B 0
8 6 7 eqeq12d B = if B B 0 if A C A + span B = if A C A span B if A C A + span if B B 0 = if A C A span if B B 0
9 ifchhv if A C A C
10 ifhvhv0 if B B 0
11 9 10 spansnji if A C A + span if B B 0 = if A C A span if B B 0
12 3 8 11 dedth2h A C B A + span B = A span B