| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spansnj.1 |
|- A e. CH |
| 2 |
|
spansnj.2 |
|- B e. ~H |
| 3 |
1
|
chshii |
|- A e. SH |
| 4 |
2
|
spansnchi |
|- ( span ` { B } ) e. CH |
| 5 |
4
|
chshii |
|- ( span ` { B } ) e. SH |
| 6 |
3 5
|
shjshsi |
|- ( A vH ( span ` { B } ) ) = ( _|_ ` ( _|_ ` ( A +H ( span ` { B } ) ) ) ) |
| 7 |
1
|
chssii |
|- A C_ ~H |
| 8 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 9 |
8 2
|
pjhclii |
|- ( ( projh ` ( _|_ ` A ) ) ` B ) e. ~H |
| 10 |
|
snssi |
|- ( ( ( projh ` ( _|_ ` A ) ) ` B ) e. ~H -> { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ~H ) |
| 11 |
9 10
|
ax-mp |
|- { ( ( projh ` ( _|_ ` A ) ) ` B ) } C_ ~H |
| 12 |
7 11
|
spanuni |
|- ( span ` ( A u. { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( ( span ` A ) +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 13 |
|
spanid |
|- ( A e. SH -> ( span ` A ) = A ) |
| 14 |
3 13
|
ax-mp |
|- ( span ` A ) = A |
| 15 |
14
|
oveq1i |
|- ( ( span ` A ) +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( A +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 16 |
7 2
|
spansnpji |
|- A C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 17 |
9
|
spansnchi |
|- ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) e. CH |
| 18 |
1 17
|
osumi |
|- ( A C_ ( _|_ ` ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) -> ( A +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) ) |
| 19 |
16 18
|
ax-mp |
|- ( A +H ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 20 |
12 15 19
|
3eqtrri |
|- ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( span ` ( A u. { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 21 |
1 2
|
spanunsni |
|- ( span ` ( A u. { B } ) ) = ( span ` ( A u. { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 22 |
20 21
|
eqtr4i |
|- ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) = ( span ` ( A u. { B } ) ) |
| 23 |
|
snssi |
|- ( B e. ~H -> { B } C_ ~H ) |
| 24 |
2 23
|
ax-mp |
|- { B } C_ ~H |
| 25 |
7 24
|
spanuni |
|- ( span ` ( A u. { B } ) ) = ( ( span ` A ) +H ( span ` { B } ) ) |
| 26 |
14
|
oveq1i |
|- ( ( span ` A ) +H ( span ` { B } ) ) = ( A +H ( span ` { B } ) ) |
| 27 |
22 25 26
|
3eqtrri |
|- ( A +H ( span ` { B } ) ) = ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) |
| 28 |
1 17
|
chjcli |
|- ( A vH ( span ` { ( ( projh ` ( _|_ ` A ) ) ` B ) } ) ) e. CH |
| 29 |
27 28
|
eqeltri |
|- ( A +H ( span ` { B } ) ) e. CH |
| 30 |
29
|
ococi |
|- ( _|_ ` ( _|_ ` ( A +H ( span ` { B } ) ) ) ) = ( A +H ( span ` { B } ) ) |
| 31 |
6 30
|
eqtr2i |
|- ( A +H ( span ` { B } ) ) = ( A vH ( span ` { B } ) ) |