| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shjshs.1 |
|- A e. SH |
| 2 |
|
shjshs.2 |
|- B e. SH |
| 3 |
|
shjval |
|- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
| 4 |
1 2 3
|
mp2an |
|- ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
| 5 |
1 2
|
shunssi |
|- ( A u. B ) C_ ( A +H B ) |
| 6 |
1
|
shssii |
|- A C_ ~H |
| 7 |
2
|
shssii |
|- B C_ ~H |
| 8 |
6 7
|
unssi |
|- ( A u. B ) C_ ~H |
| 9 |
1 2
|
shscli |
|- ( A +H B ) e. SH |
| 10 |
9
|
shssii |
|- ( A +H B ) C_ ~H |
| 11 |
8 10
|
occon2i |
|- ( ( A u. B ) C_ ( A +H B ) -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` ( A +H B ) ) ) ) |
| 12 |
5 11
|
ax-mp |
|- ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` ( A +H B ) ) ) |
| 13 |
4 12
|
eqsstri |
|- ( A vH B ) C_ ( _|_ ` ( _|_ ` ( A +H B ) ) ) |
| 14 |
1 2
|
shsleji |
|- ( A +H B ) C_ ( A vH B ) |
| 15 |
1 2
|
shjcli |
|- ( A vH B ) e. CH |
| 16 |
15
|
chssii |
|- ( A vH B ) C_ ~H |
| 17 |
|
occon |
|- ( ( ( A +H B ) C_ ~H /\ ( A vH B ) C_ ~H ) -> ( ( A +H B ) C_ ( A vH B ) -> ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) ) ) |
| 18 |
10 16 17
|
mp2an |
|- ( ( A +H B ) C_ ( A vH B ) -> ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) ) |
| 19 |
14 18
|
ax-mp |
|- ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) |
| 20 |
|
occl |
|- ( ( A +H B ) C_ ~H -> ( _|_ ` ( A +H B ) ) e. CH ) |
| 21 |
10 20
|
ax-mp |
|- ( _|_ ` ( A +H B ) ) e. CH |
| 22 |
15 21
|
chsscon1i |
|- ( ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) <-> ( _|_ ` ( _|_ ` ( A +H B ) ) ) C_ ( A vH B ) ) |
| 23 |
19 22
|
mpbi |
|- ( _|_ ` ( _|_ ` ( A +H B ) ) ) C_ ( A vH B ) |
| 24 |
13 23
|
eqssi |
|- ( A vH B ) = ( _|_ ` ( _|_ ` ( A +H B ) ) ) |